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1 Lipschitz Continuous, α-Strongly Convex, and β-Smooth
Denote K ∈ Rd a bounded domain, and compact set in Euclidean space, which is bounded and closed. We also
denote by D an upper bound on the diameter of domain K,

∀x, y ∈ K, ‖x− y‖ ≤ D (1)

We denote by G > 0 an upper bound on the norm of the subgradients of f over K, i.e., ‖∇f(x)‖ ≤ G for all
x ∈ K. Such an upper bound implies that the function is Lipschitz continuous with parameter G, that is, for
all x, y ∈ K

|f(x)− f(y)| ≤ G‖x− y‖ (2)

We say f is α-strongly convex, then ∀x, y ∈ K

f(x) ≥ f(y) +∇f(y)>(x− y) + α

2
‖x− y‖2 (3)

The second derivative of f has lower bound α. The hessian ∇2f(x) has lower bound means the largest eigenvalue
of hessian is lower bounded. We say f is β -smooth, then ∀x, y ∈ K

f(x) ≤ f(y) +∇f(y)>(x− y) + β

2
‖x− y‖2 (4)

The second derivative of f has upper bound β. Thus, we have

αI � ∇2f(x) � βI (5)

From this, we can observe that f is β-smooth is equivalent to a Lipschitz condition over the gradients of f ,

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ (6)

When the function f is both α-strongly convex and β-smooth, we denotes γ as the well-condition number,

γ =
α

β
≤ 1

.

• f(x) = x, f is convex and smooth. Check the second derivative, this is not strongly convex.

• f(x) = x+ x2, f is convex, strongly convex, and smooth.

• f(x) = exp(−x), f is convex, but not strongly convex or smooth. Because f ′′(x) = exp(−x) has no lower
bound.

• Let f be α1-strongly convex and g be α2-strongly convex. Then f + g is (α1 + α2)-strongly convex.

• Let f be β1-smooth and g be β2-smooth. Then f + g is (β1 + β2)-smooth.
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2 Convergence Analysis of Gradient Descent on γ-well Conditioned
Function

We denote
ht = f(xt)−min

x∈K
f(x) (7)

h1 = f(x1)−min
x∈K

f(x) (8)

where x1 is the initial value of x in gradient descent method. The target of convergence analysis is to compare
the value ht+1 and ht or to look for a upper bound of ht+1 − ht , then we can conclude the convergence rate
based on the upper bound of ht+1, which is associated with t.

Theorem 1. Consider x∗ = argminx∈Rd f(x). Assume f is γ-well conditioned (i.e. α-strongly convex and
β-smooth). Then, the gradient descent algorithm with learning rate ηt = 1

β converges as

ht+1 = f(xt+1)−min
x∈K

f(x) ≤ h1 · e−γt (9)

Proof. First, we have

ht+1 − ht = f(xt+1)− f(xt) (10)
= f(xt − ηt∇f(xt))− f(xt) (11)

≤ −ηt∇f(xt)>∇f(xt) +
β

2
η2t ‖∇f(xt)‖2 (12)

= − 1

2β
‖∇f(x)‖2 (13)

≤ − 1

αβ
(2αht) (14)

= −α
β
ht (15)

where the inequality (8) is based on β-smoothness, since we are looking for an upper bound. The second
inequality is based on the fact that

‖∇f(x)‖2 ≥ 2αht (16)

since according to α-strongly convex, we have

f(y) ≥ f(x) +∇f(x)>(y − x) + α

2
‖y − x‖2 (17)

≥ min
z

{
f(x) +∇f(x)(z − x) + α

2
‖z − x‖2

}
(18)

= f(x)− 1

2α
‖∇f(x)‖2 (19)

where the last equation is because z = x− 1
α∇f(x).

Since we have ht+1 − ht = −αβht, we can get

ht+1 ≤ (1− α

β
)ht (20)

= (1− γ)ht (21)
≤ (1− γ)[(1− γ)ht−1] (22)

≤ (1− γ)t · h1 (23)

≤ (e−γ)t · h1 (24)

where the last inequality is due to the fact

1 + x ≤ (1 +
x

n
)n

n=∞−−−→ ex (25)

We can see that ht+1 is upper bounded by h1 · e−γ , since γ is positive, we can say it converges exponentially
fast, a.k.a. linear convergence rate.

Now, if we slightly change the learning rate, we can see a significant improvement of convergence rate.

Theorem 2. For constrained minimization of γ-well conditioned functions and ηt = α
2(β−α) , gradient descent

algorithm converges as
ht+1 ≤ h1 · e−

γt
4 (26)

Proof.
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3 Examples
Now, we would like to introduce some examples such that we can apply our theorems above to more general
functions. However, our approach may not show tighter bound than analyzing GD from scratch.

3.1 Reduction to Smooth, Non-Strongly Convex Functions
Assume f is non-strongly convex, but β-smooth, we cannot apply our theorems directly, and we need to make
a new function that is well-conditioned, i.e.

g(x) = f(x) +
α̃

2
‖x1‖ (27)

Now, we can apply gradient descent method with learning rate ηt = 1
β on function g to get a meaningful

convergence rate, since g is α̃-strongly convex, and (α̃+ β)-smooth.

Lemma 3. For β-smooth convex functions f , apply gradient descent on function g with parameter α̃ = β log t
D2t

converges as

ht+1 = O(β log t
t

) (28)

Proof.

3.2 Reduction to Stronlgy Convex, Non-Smooth Functions
Smoothing cannot be obtained by simple addition of a smooth (or any other) function. Instead, we need a
smoothing operation, which amounts to taking a local integral of the function, as follows.
Let f be G-Lipschitz continuous and α-strongly convex. Define for any θ > 0

f̂θ = Ev∼B [f(x+ θv)] (29)

where B = {x ∈ Rd : ‖x‖ ≤ 1} is the Euclidean ball and v ∼ B denotes a random variable drawn from the
uniform distribution over B. We will prove that the function f̂θ is a smooth approximation to f : Rd → R, it
is both smooth and close in value to f , as given in the following lemma.

Lemma 4. f̂θ has the following properties:

1. If f is α-strongly convex, then so is f̂θ

2. f̂θ is d·G
θ -smooth, where d denotes by the dimension of the variable x.

3. |f̂θ(x)− f(x)| ≤ θG for all x ∈ K.

Proof. First, since f̂θ is an average of α-strongly convex functions, it is also α-strongly convex. In order to
prove smoothness, we will use Stokes’ theorem from calculus: For all x ∈ Rd and for a vector random variable
v which is uniformly distributed over the Euclidean sphere S = {y ∈ Rd : ‖y‖ = 1}

Ev∼S [f(x+ θv)v] =
θ

d
∇f̂θ(x) (30)

We can see that there is ∇f̂θ(x) in the formula above. Recall that a function f is β-smooth if and only if
gradient of f is Lipschitz continuous for all x, y ∈ K, which is

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖ (31)

Now, in order to show f̂θ is smooth, our target becomes to find the upper bound of second derivative of f̂θ:

‖∇f̂θ(x)−∇f̂θ(y)‖ =
d

θ
‖Ev∼S [f(x+ θv)v]− Ev∼S [f(y + θv)v]‖ (32)

=
d

θ
‖Ev∼S [f(x+ θv)v − f(y + θv)v]‖ (33)

≤ d

θ
Ev∼S‖[f(x+ θv)v − f(y + θv)v]‖ (34)

≤ d

θ
G‖x− y‖Ev∼S [‖v‖] (35)

=
d ·G
θ
‖x− y‖ (36)
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where (33) based on linearity of expectation, (34) based on the Jensen’s inequality on norm, (35) based on
Lipschitz continuity, and the (36) is based on stoke theorem.
The third property, namely that f̂θ is a good approximation to f

|f̂θ(x)− f(x)| = |Ev∼B [f(x+ θv)− f(x)]| (37)
≤ Ev∼B [|f(x+ θv)− f(x)|] (38)
≤ Ev∼B [G‖θv‖] (39)
≤ Gθ (40)

where the (37) is based on the definition of f̂ , (38) is based on the Jensen’s inequality, (39) is based on the f is
G-Lipschitz, and (40) is based on v ∈ B.

Lemma 5. Apply gradient descent on f̂θ, T, {ηt = θ = dG
α

log t
t }, it converges as

ht = O
(
G2d log t

αt

)
(41)

Proof. Lemma 4 shows that f̂θ is a good approximation to the original function f , and the function f̂θ is
γ-well-conditioned for γ = αθ

dG . Hence,

ht+1 = f(xt+1)− f(x∗) (42)

= [f(xt+1)− f̂θ(xt+1)] + [f̂θ(xt+1)− f̂θ(x∗)] + [f̂θ(x)− f(x∗)] (43)

≤ θG+ [f̂θ(xt+1)− f̂θ(x∗)] + θG (44)

≤ ĥ1 · e−
γt
4 + 2θG (45)

= ĥ1 · e−
αθt
4dG + 2θG (46)

= ĥ1 · e−
αt

4dG
dG
α

log t
t + 2θG (47)

= ĥ1 · e−
log t
4 + 2

dG2

α

log t

t
(48)

= O
(
G2d log t

αt

)
(49)

Lemma 6. If f is neither strongly convex, not β-smooth, but Lipschitz continuous, applying gradient descent
on f will converge as

ht+1 = O( log t√
t
) (50)
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