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1 The Boltzmann Machine

A Boltzmann machine is a Markov random field having a particular structure.

Figure 1: The Boltzmann Machine

A Boltzmann machine contains N units or particles, each of which has state in {0,1} and associated with a
random variable Xi . We denotes the parameters in Boltzmann machine as θ = (b1, · · · , bN , w1,2, · · · , wN−1,N ) ,
where bi is bias for ith unit and wi,j is weight between unit i and unit j, and specifically (i, j) ∈ [1, N−1]×[i+1, N ].
The energy of the Boltzmann machine is defined as

Eθ(x) = −
N∑
i=1

bixi −
N−1∑
i=1

N∑
j=i+1

wi,jxixj = −b>x− x>Wx (1)

Of course, we can still use Boltzmann’s Law to convert the energy into probability:

Pθ(x) =
1

Z(T )
exp{−Eθ(x)/T} =

exp(−Eθ(x))∑
x̃∈S exp(−Eθ(x̃)

(2)

where we set T = 1, S denotes the space of all possible configurations of states, and the denominator is the well-
known partition function Z. Since we are capable to convert the energy to probability, a Boltzmann machine
can be used to model the probability distribution of a target pattern, denoted by Pdata(x̃) .

2 Different Boltzmann Machines

Figure 2: The Boltzmann Machines with Hidden Units, and Conditional Boltzmann Machine. (a) and (b) are
generative models, and (3) is discriminative model.
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We can build different Boltzmann machine to model various probability distributions, for example the distri-
bution with hidden variable and the conditional distribution, which corresponds to the (b) and (c) in the figure
above. The circle above the dash represent the Pθ(·), and the ones under the dash line represent Pdata(·). We
will learn how to model those distribution with Boltzmann machine in following sections, and explain why the
structure of Boltzmann machines is useful.

3 Learning A Generative Model

Now we would like to use our Boltzmann machine to learn a Pθ(·) that best approximates a given Pdata(·). The
classical method is to minimize the KL-divergence from Pθ(·) to Pdata(·)

KL(Pdata‖Pθ) =
∑
x̃∈S

Pdata(x̃) log
Pdata(x̃)

Pθ(x̃)

=
∑
x̃∈S

Pdata(x̃) logPdata(x̃)−
∑
x̃∈S

Pdata(x̃) logPθ(x̃)︸ ︷︷ ︸
f(θ)

Note that, minimizing the KL(Pdata‖Pθ) is same as maximizing the log likelihood of sampled data. In other
words, we sample m data from real distribution Pdata(·), and we would like to find the parameter θ such that
maximize the Pθ(·). In order to find the optimal θ , we only need to maximize the second term f(θ) by taking
the gradient of f(θ) with respect to θ:

∇f(θ) =
∑
x̃

Pdata(x̃)∇ logPθ(x̃) (3)

Is the function f(θ) convex ?

3.1 Gradient-Based Method

Here, we only consider the case that all of the units are visible. Once we find the gradient, we can use the
gradient-based method to find the maximal point:

θ = θ + η∇f(θ) (4)

We can write down the closed form of ∇ logPθ(x̃),

∇ logPθ(x) = ∇ log
exp(−Eθ(x))∑
x̃ exp(−Eθ(x̂))

(5)

= −∇Eθ(x)−∇ log
∑
x̂

exp(−Eθ(x̂)) (6)

= −∇Eθ(x)−
∑

x̂ exp(−Eθ(x̂))∇Eθ(x̂)∑
x̃ exp(−Eθ(x̃))

(7)

= −∇Eθ(x) +
∑
x̂

exp(−Eθ(x̂))∑
x̃ exp(−Eθ(x̃))

∇Eθ(x̂) (8)

= −∇Eθ(x) +
∑
x̂

Pθ(x̂)∇Eθ(x̂) (9)

and therefore, we can derive the ∇f(θ)

∇f(θ) =
∑
x̃

Pdata(x̃)∇ logPθ(x̃) (10)

=
∑
x̃

Pdata(x̃)

{
−∇Eθ(x) +

∑
x̂

Pθ(x̂)∇Eθ(x̂)

}
(11)

= −
∑
x̃

Pdata(x̃)∇Eθ(x̃) +
∑
x̃

Pdata(x̃)
∑
x̂

Pθ(x̂)∇Eθ(x̂) (12)

= −
∑
x̃

Pdata(x̃)∇Eθ(x̃) + 1.0 ∗
∑
x̂

Pθ(x̂)∇Eθ(x̂) (13)

= −
∑
x̃

(Pdata(x̃)− Pθ(x̃))∇Eθ(x̃) (14)

= Eθ[∇Eθ(x)]︸ ︷︷ ︸
expected gradient of energy
w.r.t to data distribution

− Edata[∇Eθ(x)]︸ ︷︷ ︸
expected gradient of energy
w.r.t model distribution

with the current value of θ

(15)
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3.2 Interpretation

Now, let’s interpret the formula (13) and (14) in term of the gradient-ascent update. We would like to maximize
the f(θ), which is same as maximizing the log-likelihood. For formula (14), for each configuration x̃, we compare
Pθ(x̃) and Pdata(x̃):

• If Pθ(x̃) > Pdata(x̃), that means the configuration x̃ is likely generated by our model Pθ rather than
sampled from data distribution, therefore we update θ along the gradient of energy w.r.t θ that it increases
the energy Eθ(x̃) (note that for Tildex, and large energy means incompatibility of states) so that the x̃
becomes less likely to be generated with Pθ.

• If Pθ(x̃) is smaller than Pdata(x̃), we update θ in a way that Eθ(x̃) decreases.

For formula (13), the learning rule can be considered as decreasing the energy of all ”positive” or ”real” samples
that are generated according to a target data distribution Pdata and increasing the energy of ”negative” or
”fake” samples that are generated according to the current model. With this learning rule, this model can
be trained as a good discriminator that classify if the example is generated by real data distribution or by
our model, since our model will give low energy to configuration x̃ from data distribution, and high energy to
configuration x̃ generated by our model.
Eventually, the Pθ will become similar to Pdata(close but not same, since it only gets the local optima).

3.3 Stochastic Gradient-Based Method

We can rewrite the ∇ logPθ(x) as

∇ logPθ(x) = −∇Eθ(x) + Eθ[∇Eθ(x)] (16)

4 Hidden Variables

If we introduce hidden variables in our model, likewise the hidden variable in EM algorithm, we introduce the
free energy to replace the energy function for Boltzmann machine.

4.1 Gradient-Based

4.2 Stochastic Gradient-Based

5 Learning a Discriminative Model

6 Evaluating Expectation w.r.t a Model Distribution
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