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This note mainly refers to the monograph "An Introduction to Conditional Random Fields" by Sutton and
McCallum [1].

1 Introduction
Structured prediction methods are essentially a combination of classification and graphical modeling. They
combine the ability of graphical models to compactly model multivariate data with the ability of classification
methods to perform prediction using large sets of input features. Conditional random fields is a popular
probabilistic method for structured prediction. This note will cover methods for inference and parameter
estimation for CRFs, including practical issues for implementing large-scale CRFs.

In many applications, we wish to predict an output vector y = {y0, y1, ..., yT } of random variables given an
observed feature vector x. The difference between generative models and CRFs is thus exactly analogous to the
difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression
model can be seen as the simplest kind of CRF, in which where is only one output variable.

2 Graphical Modeling
It is difficult and expensive to represent distributions over many variables. The insight of the graphical modeling
perspective is that a distribution over very many variables can often be represented as a product of local functions
that each depend on a much smaller subset of variables. Graphical model is used to encode relationships between
variables, and graph represents a set of independences and factorizes distribution. This factorization turns
out to have close connection to certain conditional independence relationships among the variables - both types
of information being easily summarized by a graph. Conditional independence will make the representation of
conditional probabilities "shorter", which means it has less number of variables interacted. We will learn the
graphical models from both the factorization and conditional independence viewpoints.

2.1 Undirected Model
Consider a set of random variables Y . The undirected graph G(V,E) represents the probability distribution
of p(Y ). In the graph G, each node represents a random variable, and each edge represents the dependency
between two random variables. If the joint distribution p(Y ) satisfy the pairwise Markov property, local Markov
property, or global Markov property, then we call this joint distribution as Markov random field.

Every variable Ys ∈ Y where s ∈ {1, 2, ..., |Y |} takes outcomes from a set Y, which can be either continuous
and discrete. An arbitrary assignment to Y is denoted by a vector y. Given a variable Ys ∈ Y , the notation ys
denotes the value assigned to Ys by y. For example, we have a picture with 10 ∗ 10 pixels, so we can view this
picture as 100 random variables, and each pixel is a random variable which can take different values.
The notation 1{y=y′} denotes an indicator function of y which takes the value 1 when y = y′ and 0 other-
wise. We also require notation for marginalization. For a fixed variable assignment ys, we use the summa-
tion

∑
y\ys to indicate a summation over all possible assignments y whose value for variable Ys is equal to

ys.

Suppose a probability distribution p of interest can be represented by a product of A number of factors of
the form Ψa(ya), where a ∈ {1, 2, ..., A} and each factor Ψa(ya) depends only on a subset of Ya ⊆ Y of the
variables. One advantage is Ya may be much smaller than the full variable set Y , which allows us to reprenet
p much more efficiently. The value Ψa(ya) is a non-negative scalar that can be thought of as a measure of
how compatible the value ya are with each other. Assignments that have higher compatibility values will have
higher probability.
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Formally, given a collection of subsets {Ya}Aa=1 of Y , an undirected graphical model is the set of all distri-
butions that can be written as

p(y) =
1

Z

A∏
a=1

Ψa(ya) (1)

for any choice of factors F = {Ψa}Aa=1 that have Ψa(ya) ≥ 0 for all ya. The factors are also called local functions
or compatibility functions. The constant Z is a normalization factor that ensures the distribution p sums to 1.
It is defined as

Z =
∑
y

A∏
a=1

Ψa(ya) (2)

where the summation is over the exponentially many possible assignments to y. For this reason, computing Z
is intractable in general, but much work exists on how to approximate it.
y is the an assignment of random variables Y. Thus, undirected graphical model can easily define the joint
probability of an assignment of a set of random variables, with some assumptions that some near neighbors
are dependent with each other. We care about how to compute the joint distribution. For a given proba-
bilistic undirected model, we would like to factor the joint distribution, which will benefit the learning and
inference of the model. In fact, one main advantage of undirected graph is it is easy to get factor graph,
which can help write the joint distribution into factor form.

2.2 Factor Graph
The reason for the term "graphical model" is that the factorization (1) can be represented compactly by means
of a graph, such as factor graphs. A factor graph is a bipartite graph G = (V, F,E) in which one set of
V = {1, 2, ..., |Y |} indexes the random variables in the model, and the other set of nodes F = {1, 2, ..., A}
indexes the factors. If a variable node Ys for s ∈ V is connected to a factor node Ψa for a ∈ F , then Ys is one
of the argument of Ψa. Now, we need to check if a factor graph "describes" a given distribution or not.

Definition 1. A distribution p(y) factorizes according to a factor graph G if there exists a set of local
function Ψa such that p can be written as

p(y) =
1

Z

∏
a∈F

Ψa(yN(a)) (3)

where N(a) denotes the neighbors of the factor with index a, i.e., a set of variable indices.

Remark: in other words, if a distribution p(y) can be represented in the form of (1),then it can be
described by a factor G.

Figure 1: An example of a factor graph over three variables. This factor graph describes the set of all
distributions p over 3 variables that can be written as p(y1, y2, y3) = Ψ1(y1, y2)Ψ2(y2, y3)Ψ3(y1, y3) for
all y = (y1, y2, y3)

2.3 Markov Network
Markov Network are graphs over random variables only, rather than random variables and factors. It directly
represents conditional independence relationships in a multivariate distribution.
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Let G be an undirected graph over integers V = {1, 2, ..., |Y |} that index each random variable of interest.
For a variable index s ∈ V , let N(s) denote it neighbors in G. Then we say that a distribution p is
Markov with respect to G if it satisfies the local Markov property: for any two variables Ys, Yt ∈ Ym the
variable Ys is independent of Yt conditioned on its neighbors YN(s). Intuitively, this means that YN(s)

on its own contains all of information that is useful for predicting Ys. We can see this is very similar to
the idea of applying convolution on small region of image.

A Markov network has an undesirable ambiguity from the factorization perspective.

Figure 2: A Markov network with an ambiguous factorization. Both of the factor graphs at right factor-
ize according to the Markov network at left. p(y1, y2, y3) ∼ f(y1, y2, y3) for some positive function f , and
p(y1, y2, y3) ∼ f(y1, y2)g(y2, y3)h(y1, y3). The second model family is a strict subset of the first, so in this
smaller family we might not require as much data to accurately estimate the distribution. But Markov network
formalism cannot distinguish between these two parameterizations. ???

2.4 Directed Models
A directed graphical model describes how a distribution factorizes into local conditional probability distributions.
Let G be a directed acyclic graph, in which π(s) are the indices of the parents of Ys in G. A directed graphical
is a family of distributions that factorize as

p(y) =

S∏
s=1

p(ys|yπ(s)) (4)

We refer to the distributions p(ys|yπ(s)) as local conditional distributions. Note that π(s) can be empty for
variables that have no parents, then in this case p(ys|yπ(s)) = p(ys).

Directed models can be thought of as a kind of factor graph in which the individual factors are locally
normalized in a special fashion so that

1. the factors equal conditional distributions over subsets of variables

2. the normalization constant Z = 1

Directed models are often used as generative models. Note that, conditional random fields and structured SVM
are discrimiative models.

2.5 Problem
The main difference between Markov Random fields and Conditional Random Fields is: there are some observed
random variables in CRFs. Given a set of observed random variables X, we would like to predict and output the
value of some unobserved output random variables Y . However,we will be interested in building distribution
over the combined set of variables X ∪ Y ,

p(x,y) =
1

Z

A∏
a=1

Ψa(xa,ya) (5)

where now each local function Ψa depends on two subsets of variables Xa ∈ X and Ya ∈ Y .

2.6 Inference in Graphical Models
Inference is a challenging task, depending on the structure of the graph, and in many case, NP-hard. However,
in some cases, the problem is tractable, we can use exact inference algorithms. Otherwise, we have to use
approximate inference algorithms.
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• Marginal inference: what is the probability of a given variables after sum everything else out (e.g., prob-
ability of spam vs non-spam) ?

p(y = 1) =
∑
x1

∑
x2

· · ·
∑
xn

p(y = 1, x1, ..., xn) (6)

• MAP (Maximum A Posterior) Inference: what is the most likely assignment to the variables, possibly
conditioned on evidence (e.g., predicting characters from handwriting).

max
x1,...,xn

p(x1, ..., xn|y = 1) (7)

• Exact inferences:

– variable elimination

– message passing

– junction tree

– graph cuts

• Approximate inferences:

– loopy belief propagation

– linear programming relaxation

– sampling methods

– variational methods

3 Generative versus Discriminative Models
Generative models are models that describe how a label vector y can probabilistically "generate" a feature
vector x. Discriminative models work in the reverse direction, describing directly how to take a feature vector
x and assign it a label y. For example, the naive Bayes and HMM are generative, and the logistic regression
model is discriminative.

Because a generative model takes the form p(y,x) = p(y)p(x|y), it is often natural to represent a generative
model by a directed graph in which outputs y topologically precede the inputs, which means we first generate
y, and then generate x based on the existing y. Similarly, we will see that it is often natural to represent a
discriminative model by a undirected graph. However, this need not always be the case. It can also be useful
to depict discriminative models by directed graphs in which the x precede the y.

3.1 Naive Bayes Classifier
We want to predict a single discrete class variable y given a vector of features x = (x1, ..., xK). One simple
way to accomplish this is to assume that once the class label is known, all the features are independent. The
resulting classifier is called the naive Bayes classifier. It is based on a joint probability model of the form[2]:

p(y,x) = p(y)

K∏
k=1

p(xk|y) (8)

hence, we can describe this distribution with directed model as below.

Figure 3: The naive Bayes classifier

We can also write this model as a factor graph, by defining a factor Ψ(y) = p(y), and a factor Ψk(y, xk) = p(xk|y)
for each feature xk.
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Figure 4: The factor graph of naive Bayes classifier.

3.2 Logistic Regression or Maximum Entropy Classifier
Logistic regression is used in binomial case, but maximum entropy classifier is used in multinomial setting[3].
Both are called log-linear model. They assume that the log probability, log p(y|x), of each class is a linear
function of x, plus a normalization constant. why this assumption ? Thus, we can convert a value into a
probability. This leads to the conditional distribution:

p(y|x) =
1

Z(x)
exp

θy +

K∑
j=1

θy,jxj

 (9)

where

Z(x) =
∑
y

exp

θy +

K∑
j=1

θy,jxj

 (10)

is a normalization constant, and θy is a bias weight that acts like log p(y) in naive Bayes. Note that, y here is a
fixed value of a random variable, and x is the features. We want to know the probability of that data belongs
to class y given the K-dimensional data features x.
Feature Functions Now let’s define a set of feature functions that are nonzero only for a single class. In other
words, each class has one feature function. To do this, the feature functions can be defined as fy′,j(y,x) =
1{y′=y}xj = {0 or xj} for the feature weight and fy′(y,x) = 1{y′=y} for the bias weights. Now we can use fk
to index each feature function f{y′,j}, and θk to index its corresponding weight θy′,j . Using this notation trick,
the logistic regression model becomes:

p(y|x) =
1

Z(x)
exp

{
K∑
k=1

θkfk(y,x)

}
(11)

Thus, in the summation, it will sum over all data features for the class y. We will introduce feature function in
details when we get into the linear-chain CRFs.

3.3 Sequence Models
Classifiers predict only a single class variable, but the true power of graphical model lies in their ability to model
many variables that are interdependent. In this section, we discuss perhaps the simplest form of dependency,
in which the output variables in the graphical model are arranged in a sequence.
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Named-entity Recognition (NER), is the problem of identifying and classifying proper names in text,
including locations, such as China; people, such as George Bush; and organizations, such as the United
Nations. The system must identify them based only on context. There is a problem if we classify each
word independently, for example, the New York and New York Time are different entity. One way to
relax this independence assumption is to arrange the output variables in a linear chain, which is taken
by hidden Markov model(HMM).
An HMM models a sequences of observation X = {xt}Tt=1 by assuming that there is an underlying
sequence of states Y = {yt}Tt=1. We let O be the finite set of possible observations and S be a finite set
of possible states, i.e. xt ∈ O and yt ∈ S for all t. To make the joint distribution p(y,x) tractably, an
HMM makes two independence assumption:

1. First, it assumes that each state depends only on its immediate predecessor

2. Second, it also assumes that each observation variable xt depends only on the current state yt.

Thus, we can factorize the joint probability as

p(y,x) =

T∏
t=1

p(yt|yt−1)p(xt|yt) (12)

3.4 Comparison: commons
Both generative models and discriminative models describe distribution over (y,x), but they work in different
directions. A generative model, such as the naive Bayes classifier and the HMM, is a family of joint distributions
that factorizes as

p(y,x) = p(y)p(x|y) (13)

that is, it describes how to sample, or "generate", values for features given the label. A discriminative model,
such as the logistic regression model, is a family of conditional distribution p(y|x), that is, the classification
rule is modeled directly. In principle, a discriminative model could also be used to obtain a joint distribution
p(y,x) by supplying a marginal distribution p(x) over the inputs, but this is rarely needed.

In addition, to include interdependent features in a generative model, we have two choice:

1. The first choice is to enhance the model to represent dependencies among the inputs, e.g., by adding
directed edges among each xt. But this is often difficult to do while retaining tractability.

2. The second choice is to make simplifying independence assumptions, such as the naive Bayes assumption.
This idea can sometimes work well. But it can also be problematic because the independence assumptions
can hurt performance.

3.5 Comparison: differences
The main difference between discriminative and generative models is that a conditional distribution p(y|x) does
not include a model of p(x), which is not needed for classification anyway. The difficulty in modeling p(x)
is that it often contains many highly dependent features that are difficult to model. By modeling
the the conditional distribution directly, we can remain agnostic about the form of p(x). For
example, the family of naive Bayes distribution has conditionals in the "logistic regression form". But there are
many other joint models, some with complex dependencies among x, whose conditional distributions also have
the form (10). They have totally different p(x).

The principal advantage of discriminative modeling, such as CRFs, is they make conditional independence
assumptions among y, and assumptions about how the y can depend on x, but do not make conditional
independence assumptions among x. This point also be understood graphically.
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Suppose that we have a factor graph representation for the joint distribution p(y,x). The random
variables in the left of bipartite graph can be a set of input variables X that we assume are always
observed, and a set of output variables Y that we wish to predict. The factors lies on the right of
bipartite graph. We will be interested in building distributions over the combined set of variable X ∪Y ,
and the undirected model over X and Y would be given by

p(x,y) =
1

Z

A∏
a=1

Ψa(xa,ya) (14)

where now each local function Ψa depends on two subsets of variables Xa ⊆ X and Ya ⊆ Y . The
normalization constant becomes

Z =
∑
x,y

∏
a∈F

Ψa(xa,ya) (15)

which now involves summing over all assignments both to x and y. If we want to construct a factor
graph for the conditional distribution p(y|x), any factors that depend only on x vanish from the graphical
structure for the conditional distribution. They are irrelevant to the conditional because they are constant
with respect to y

3.6 Naive Bayes and Logistic Regression Form a Generative-Discriminative Pair
The difference between naive Bayes and logistic regression is due only to the fact that the first is generative and
the second discriminative. That is, naive Bayes use the p(y,x) but logistic regression use p(y|x) for classification.
The two classifiers are, for discrete input, identical in all other respect. The navie Bayes model defines the same
family of distributions as the logistic regression model, if we interpret the logistic regression generatively as

p(y,x) =
exp

{∑K
k=1 θkfk(y,x)

}
∑
ŷ,x̂ exp

{∑K
k=1 θkfk(ŷ, x̂)

} (16)

This means that if the navie Bayes model is trained to maximize the conditional likelihood, we recover the
same classifier as from logistic regression. Then, we have

p(y|x) =
p(y,x)

p(x)
=

p(y)
∏K
k=1 p(xk|y)∑

y p(y)
∏K
k=1 p(xk|y)

(17)

and we get the optimal y∗ by using MAP

y∗ = arg max
y

p(y|x) = arg max
y

p(y,x) = arg max
y

p(y)

K∏
k=1

p(xk|y) (18)

Conversely, if the logistic regression model is interpreted generatively, as in (16), and is trained to maximize
the joint likelihood p(y,x), then we recover the same classifier as from naive Bayes.

3.7 Why different ?
So far, we may still not clear why these approaches should be so different, because we can always convert between
the two methods using Bayes rule. Generative and discriminative models both have the aim of estimating p(y|x),
but they get there in different ways, or they get different estimate in practice. Estimating p(y)p(x|y) first, and
then computing the resulting p(y|x) (the generative approach) yields a different estimate than estimating p(y|x)
directly.

If we managed to obtain the "true" underlying distribution from which our data were actually sampled, that
is

p∗(y,x) = p∗(y)p(x|y), (19)

then we can simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But
we never have the "true" distribution.
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Insight of Generative and Discriminative Model.
The fundamental different between discriminative models and generative models is[4]:

• Discriminative model learn the (hard or soft) boundary between classes

• Generative models model the distribution of individual classes

Also, there is an interpretation from the perspective of degree of freedom and overfitting.

3.8 Some Advantages of Generative Models
1. Generative models can be more natural for handling latent variables, partially-labeled data, and unlabeled

data. In the most extreme case, when the data is entirely unlabeled, generative models can be applied in
an unsupervised fashion.

2. In some cases, a generative model can perform better than a discriminative model, intuitively because the
input model p(x) may have a smoothing effect on the conditional.

3. Sometimes either the problem suggests a natural generative model, or the application requires the ability
to predict both future inputs and future outputs, making a generative model preferable.
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