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Figure 1: Diagram of the relationship between naive Bayes, logistic regression, HMMs, linear-chain CRFs,
generative models, and general CRFs

1 Hidden Markov Model
The hidden Markov model can be visualized from figure 1. The joint distribution of observed variables x and
unobserved variables y can be formulated as

p(x,y) = p(y0)p(x0|y0)

n∏
i=1

p(yi|yi−1)p(xi|yi) (1)

There are 3 probabilities we need to consider in this scenario:

• transition probability p(yi|yi−1)

• emission probability p(yi|xi)

• initial probability p(y0)

Those three probabilities can be set by domain knowledge or learned from some existing prior knowledge.
However, for following two algorithms, we assume those 3 probabilities are known.

1.1 Forward Backward Algorithm
Forward-Backward algorithm is used to compute the probability p(yk|x) in HMMs, which is an example of
dynamic programming algorithm, assumed transition probabilities, emission probabilities, and initial probability
are known.

Forward is to compute the p(yk,x1:k) for all k, and the backward is to compute the p(xk+1:n|yk) for all k.
We can see that

p(yk|x) ∝ p(yk,x) = p(yk,x1:k) · p(x(k+1):n|yk,x1:k) = p(yk,x1:k) · p(x(k+1):n|yk) (2)

note that x1:k is conditionally independent to x(k+1):n given the yk. Now, we focus on computing the p(yk,x1:k)
first. The trick here is the marginalization,
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p(yk,x1:k) =

M∑
y(k−1)=1

p(yk, yk−1,x1:k)

=

M∑
y(k−1)=1

p(xk|yk, yk−1,x1:(k−1)) · p(yk|yk−1, x1:(k−1)) · p(y(k−1),x1:(k−1))

=

M∑
y(k−1)=1

p(xk|yk)︸ ︷︷ ︸
emission prob.

· p(yk|yk−1)︸ ︷︷ ︸
transition prob.

·p(y(k−1),x1:(k−1))

We can see a recursion in the formula, thus we can use the Dynamic Programming to compute those distributions.
The backward algorithm is very similar to the forward algorithm.

p(x(k+1):n|yk) =

M∑
y(k+1)=1

p(x(k+1):n, y(k+1)|yk)

=

M∑
y(k+1)=1

p(x(k+1)|y(k+1), yk) · p(y(k+1)|yk) · p(x(k+2):n|y(k+1), yk, x(k+1))

=

M∑
y(k+1)=1

p(x(k+1)|y(k+1))︸ ︷︷ ︸
emission prob.

· p(y(k+1)|yk)︸ ︷︷ ︸
transition prob.

·p(x(k+2):n|y(k+1))

We also see a recursion in the backward formula. When we use the forward-backward algorithm on HMMs,
since it needs many multiplications, it usually runs into underflow, which can be fixed by "log-sum-exp" trick.
Note that, the forward-backward algorithm is similar to the sum-product algorithm in Markov random
fields

.

1.2 Viterbi Algorithm
Viterbi algorithm is to find the most probabilistic unobserved states given a sequence of observed states,

y∗ = arg max
y

p(y|x) = arg max
y

p(y,x)

assumed transition prob., emission prob., and initial prob. are all known. This algorithm is very similar to
forward-backward algorithm, which use the recursion and dynamic programming to solve the problem.

If f(a) ≥ 0 ∀a and g(a, b) ≥ 0 ∀a, b, then

max
a,b

f(a)g(a, b) = max
a

[
f(a) max

b
g(a, b)

]
since

max
b
f(a)g(a, b) = f(a) max

b
g(a, b)

Now, we define

µk(yk) = max
y1:(k−1)

p(y1:k,x1:k)

= max
y1:(k−1)

p(xk|yk) · p(yk|y(k−1)) · p(y1:(k−1),x1:(k−1))

= max
yk−1

p(xk|yk) · p(yk|y(k−1)) · max
y1:(k−2)

p(y1:(k−1),x1:(k−1))

= max
y1:(k−1)

p(xk|yk) · p(yk|y(k−1)) · µk−1(yk−1)

and we have µ1(y1) = p(y1, x1) = p(y1)p(x1|y1), and µn(yn) = maxy1:(n−1)
p(x1:n,y1:n). Note that, we want to

maximize y1:(n), we have to obtain the maximal y1:(n−1) first. Hence, we need to compute the µ1(y1) to µn(yn)
iteratively.
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Note that, the viterbi algorithm is similar to the max-sum algorithm in Markov random fields

.

2 From HMMs to Linear-Chain CRFs
HMMs are the sequence version of Naive Bayes models, while linear-chain CRFs are the sequence version of
logistic regression. HMMs assume those features are independent, like Naive Bayes. However, linear-chain
CRFs can model the overlapping and non-independent features, where the sum-product algorithm and max-
product algorithm still apply. (Note that, conditional random fields is the conditional probability distribution
given some observed random variable X, which satisfy the pairwise Markov property, local Markov property, or
global Markov property.)

Definition 1. Assume X = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn) be linear-chained random variables.
Assume the X is observed, the conditional probability distribution p(Y |X) forms the conditional random
field, which mean

p(Yi|X,Y1, ..., Yi−1, Yi+1, ..., Yn) = p(Yi|X,Yi−1, Yi+1) (3)

then we call p(Y |X) as linear-chained CRF.

Consider the name entity recognition (NER) problem, let x1:N be the observations (e.g. words in a docu-
ment), and y1:N the hidden labels (e.g. tags). A linear chain Conditional Random Field defines a conditional
probability (whereas HMM defines the joint)

p(y|x) =
1

Z
exp

(
N∑

n=1

F∑
i=1

λifi(yn−1, yn,x1:N , n)

)
(4)

=
1

Z

N∏
n=1

exp

(
F∑
i=1

λifi(yn−1, yn,x1:N , n)

)
(5)

=
1

Z

N∏
n=1

Ψn(yn, yn−1,xn) (6)

Since the potential function should be strictly positive, we usually define the potential functions to be expo-
nential functions.

where we sum over n = 1, ..., N word positions in the sequence. For each position, we sum over i = 1, ..., F
weighted features. The scalar λi is the weight for feature fi(·). The λi are the parameters of the CRF model,
and must be learned. We can see that, we can express it as a multiplication of local functions Ψn with cliques
correspond to a pair of states yn−1, yn as well as the corresponding xn nodes, with

Ψn = exp(λ · f)

Figure 2: Graphical model of a linear-chain CRF in which the transition factors depend on the current obser-
vation. (Discussed in this section.) [1]

2.1 Feature Function
We use an NER example with linear-chain CRF to illustrate the feature functions, which are the key component
of CRF.[2]. Note that, feature functions are not potential functions according to the equation (5). For example,
we can define a simple feature function which produces binary values: it is 1 if the current word xn is John,
and if the current state yn is PERSON:

f1(yn−1, yn,x1:N , n) =

{
1 if yn = PERSON and xn = John

0 otherwise
(7)
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How is this feature used ? It depends on its corresponding weight λ1. If λ1 > 0, whenever f1 is active (i.e.
we see the word John in the sentence and we assign it tag PERSON), it increases the probability of the tag
sequence y1:N , which is p(y,x). Of course, λ1 can be ≤ 0. We may set λ1 by domain knowledge, or learn λ1
from corpus, or both. Note, λ1, f1(·) together play the same role as HMM’s transition or emission probabilities.
Also, we can use another feature function f2 for the same word xn. Furthermore, note f1 and f2 can be both
active for a sentence. This is an example of overlapping features. It boosts up the belief of y1 = PERSON
to λ1 + λ2. Of course the features are not limited to binary functions. Any real-valued function is allowed.
Designing the features of an CRF is the most important task. In CRFs for real applications, it is common to
have tens of thousands or more features.

Here, we define a feature function as any mapping fk : Y × Y × X → R. As a special case, a feature
function can be Boolean, that is a mapping fk : Y ×Y ×X → {0, 1}. We usually define classes of feature
functions using templates of some sort. The integer k is then defined to range over all combination of
members of the classes.
We can write (18) more compactly by introducing the concept of feature functions. Each feature function
has the form fk(yt, yt−1, xt). In order to duplicate (18), we need one feature

fij(y, y
′, x) = 1{y=i}1{y′=j} (8)

for each transition (i, j) and one feature

fio(y, y′, x) = 1{y=i}1{x=o} (9)

for each state-observation pair (i, o). We refer to a feature function generally as fk, where fk ranges
over both all of the fij and all of the fio. For example, if |Y | = 3 and |X| = 4, then we have size
|fij | = 3 ∗ 3 = 9 and size |fio| = 3 ∗ 4 = 12, then K = 9 + 12 = 21. Then we can write an HMM as:

p(y,x) =
1

Z

T∏
t=1

exp

{
K∑

k=1

θkfk(yt, yt−1, xt)

}
(10)

Again, this equation defines exactly the same family of distributions as (2). The last step is to write the
conditional distribution p(y,x) that results from the HMM (8). This is

p(y|x) =
p(y,x)∑
y′ p(y

′,x)
=

∏T
t=1 exp

{∑K
k=1 θkfk(yt, yt−1, xt)

}
∑

y′
∏T

t=1 exp
{∑K

k=1 θkfk(yt, yt−1, xt)
} (11)

Note that Z 6=
∑

y′
∏T

t=1 exp
{∑K

k=1 θkfk(yt, yt−1, xt)
}
. This conditional distribution is a particular

kind of linear-chain CRF, namely, one that includes features only for the current word’s identity (only
one xt in the input of feature function). But many other linear-chain CRFs use richer features of the
input, and it only requires little change on the feature functions.

2.2 CRF Training
Training is to find the parameters λ in a CRF. Please check [1] and [2] for reference.
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