
Note on Optimization Methods

Chunpai Wang

October 2015

1 Conjugate Gradient Method

1.1 The Linear Conjugate Gradient Method
1.1.1 Objective Function

The conjugate gradient method is an iterative method for solving a linear system of equations

Ax = b (1)

where A is an n× n symmetric positive definite matrix. In general, the solution x lies at the intersection point
of n hyperplanes.
The problem is equivalent to minimize the following convex quadratic function:

min f(x) =:
1

2
xTAx− bTx (2)

And the gradient of f(x) equals the residual of the linear system, that is,

∇f(x) = Ax− b = r(x) (3)

so when x = xk we have
rk = Axk − b (4)

1.1.2 Conjugate Direction Method

Conjugacy of A Set of Vectors: A set of nonzero vectors {p0, p1, ..., pl} is said to be conjugate with respect to
the symmetric positive definite matrix A (or called A-orthogonal) if

pTi Apj = 0, for all i 6= j (5)

Note that, any set of vectors satisfying this property is also linear independent or orthogonal.
The importance of conjugacy is that we can minimize f(x) in n steps by successively minimizing it along the
individual directions in a conjugate set.

Conjugate Direction Method: Given a starting point x0 ∈ Rn and a set of conjugate directions {p0, p1, ..., pn−1},
let’s generate the sequence {xk} by setting:

xk+1 = xk + αkpk (6)

where αk is the one-dimensional minimizer of the quadratic function f(·) along xk + αkpk, that is

αk = argmin
α
f(xk + αpk) = − rTk pk

pTkApk
(7)

This is one of examples of exact line search method.

Theorem 1.1. For any x0 ∈ Rn the sequence {xk} generated by the conjugate direction algorithm(formula 6
and 7) converges to the solution x∗ of the linear system (formula 1) in at most n steps.

1

Proof. Let us first compute the αk:

f(xk + αpk) =
1

2
(xk + αpk)TA(xk + αpk)− bT (xk + αpk)

=
1

2
α2pTkApk +

1

2
αxTkApk +

1

2
αpTkAxk +

1

2
xTkAxk − bTxk − bTαpk

=
1

2
α2pTkApk + (αxTkApk − αbT pk) + (

1

2
xTkAxk − bTxk)

=
1

2
α2pTkApk + α(xTkA− bT)pk + f(xk)

=
1

2
α2pTkApk + α(ATxk − b)T pk + f(xk)

=
1

2
α2pTkApk + α(Axk − b)T pk + f(xk)

=
1

2
α2pTkApk + α∇f(xk)T pk + f(xk)

Thus, let
f ′(xk + αpk) = α2pTkApk +∇f(xk)T pk = 0

we obtain:

αk = −∇f(xk)T pk
pTkApk

= − rTk pk
pTkApk

Now note that, the set of conjugate direction {p0, p1, ..., pn−1} is given. Since the directions are linearly inde-
pendent, they must span the whole space Rn. Hence, we can write

x∗ − x0 = σ0p0 + σ1p1 + ...+ σn−1pn−1 (8)

for some choice of scalars σk. And since

xn = x0 + α0p0 + α1p1 + ...+ αn−1pn−1 (9)

generated by formula (6) and (7), the result is established if we can show that σk = αk.

By premultiplying this expression by pTkA (0 ≤ k ≤ n − 1) and using the conjugacy property (formula 5), we
obtain

pTkA(x∗ − x0) = pTkA(σ0p0 + σ1p1 + ...+ σn−1pn−1) = pTkAσkpk (10)

σk =
pTkA(x∗ − x0)

pTkApk
(11)

If xk is generated by formula (6) and (7), then we have

xk = x0 + α0p0 + α1p1 + ...+ αk−1pk−1 (12)

By premultiplying this expression by pTkA and using the conjugacy property, we have that

pTkA(xk − x0) = 0 ⇒ pTkAxk = pTkAx0 (13)

and therefore
pTkA(x∗ − x0) = pTkA(x∗ − xk) = pTk (b−Axk) = −pTk rk (14)

σk =
pTkA(x∗ − x0)

pTkApk
=
−pTk rk
pTkApk

= αk (15)

Interpretation:
If the matrix A in formula (2) is diagonal, the contours of the function f(·) are ellipses whose axes are aligned
with coordinate directions.

Theorem 1.2 (Expanding Subspace Minimization). Let x0 ∈ Rn be any starting point and suppose that the
sequence {xk} is generated by the conjugate direction algorithm formula(6)(7). Then

rTk pi = 0, for i = 0, 1, ..., k − 1, (16)

and xk is the minimizer of f(x) = 1
2x

TAx− bTx over the set

{x|x = x0 + span{p0, p1, ..., pk−1}} (17)

2

[t]

Figure 1: Successive minimizations along the coordinate directions find the minimizer of a quadratic with a
diagonal Hessian in n iterations. But if A is not diagonal, then it may not find the minimizer in n iterations.
We have to use some tricks so as to make it diagonal to use this method(See textbook for details)

Proof. We begin by showing that a point x̂ minimizes f over the set (17) if and only if

r(x̂)T pi = 0, for each i = 0, 1, ..., k − 1,

and then we will show that xk satisfies r(xk)T pi = 0, which implies that xk is the minimizer over the set (17).
First, minimizing f(x) s.t. x ∈ x0 + span{p0, p1, ..., pk−1} is equivalent to minimizing

h(σ) = f(x0 + σ0p0 + ...+ σk−1pk−1) = f(x0 + Pσ) s.t. σ ∈ Rk (18)

where σ = (σ0, ..., σk−1)T and P = (p0, ..., pk−1) ∈ Rn×k.
Since f is strictly convex, h(σ) is also a strictly convex quadratic, and it has a unique minimizer σ∗ that satisfies

∇h(σ∗) = PT∇f(x0 + Pσ∗) = 0 (19)

This equation implies that

pTi ∇f(x0 + Pσ∗) = pTi ∇f(x0 + σ∗0p0 + ...+ σ∗k−1pk−1) = 0 for each i = 0, 1, ..., k − 1 (20)

if x̂ minimizes the f , then x̂ = x0 + σ∗0p0 + ... + σ∗k−1pk−1, therefore ∇f(x0 + σ∗0p0 + ... + σ∗k−1pk−1) = r(x̂)

according to formula (3) and r(x̂)T pi = 0, as claimed.

We now use induction to show that xk satisfies rTk pi = 0. For the case k = 1, we have from the fact that
x1 = x0 + α0p0 minimizes f along direction p0 that rT1 p0 = 0, since h(α0) = f(x0 + α0p0) and ∇h(α0) =
p0∇f(x0 + α0p0) = pT0 r1 = rT1 p0 = 0. Let us now make the induction hypothesis, namely, that rTk−1pi = 0 for
i = 0, 1, ..., k − 2. According to formula 4 and 6, we have

rk = rk−1 + αk−1Apk−1 (21)

and according to formula 7, we have

αk−1 = −
pTk−1rk−1

pTk−1Apk−1

so that
pTk−1rk = pTk−1rk−1 + αk−1p

T
k−1Apk−1 = 0 (22)

Meanwhile, for the other vectors pi, i = 0, 1, ..., k − 1, we have

pTi rk = pTi rk−1 + αk−1p
T
i Apk−1 = 0 (23)

3

where pTi rk−1 = 0 because of the induction hypothesis and pTi Apk−1 = 0 because of conjugacy of the vectors
pi. Therefore, we have shown rTKpi = 0 for i = 0, 1, ..., k − 1.

Remark: the proof shows an important property that the current residual rk is orthogonal to all previous
search directions, as expressed in formula (16).

4

1.1.3 Conjugate Gradient Method

Problem: for conjugate direction method,

• the conjugate direction set {p0, p1m..., pn−1} is given at the beginning, and there are many ways to choose
it.

• For instance, the eigen-vectors v1, v2, ..., vn of A are mutually orthogonal as well as conjugate with respect
to A, so these could be used as the vector {p0, p1, ..., pn−1}.

• too expensive to compute the complete set of eigenvectors.

• Gram-Schmidt orthogonalization process, but still requires to store the entire direction set.

Intuition: the conjugate gradient method is a conjugate direction method with a very special property:

• can compute a new vector pk by using only previous vector pk−1.

• it does not need to know all the previous elements p0, p1, ..., pk−2 of the conjugate set

• pk is automatically conjugate to all previous vectors.

• requires only little storage and computation.

In the conjugate gradient method,
pk = −rk + βkpk−1, (24)

where −rk is the steepest descent direction for the function f(·) (by formula 3), pk−1 is the previous direction,
and βk is to be determined by the requirement that pk−1 and pk must be conjugate with respect to A or called
A-orthogonal (like the secant condition for Quasi-newton method).
By premultiplying formula(24) by pTk−1A and imposing the condition pTk−1Apk = 0, we find that

pTk−1Apk = pTk−1A(−rk + βkpk−1)

0 = pTk−1A(−rk) + pTk−1Aβkpk−1

rTk Apk−1 = βkp
T
k−1Apk−1

βk =
rTk Apk−1
pTk−1Apk−1

Algorithm 1: Conjugate Gradient Descent - Preliminary Version
1 Given starting point x0; Set r0 ← Ax0 − b, p0 ← −r0, k ← 0; repeat
2

αk ← −
rTk pk
pTkApk

; (a1)

xk+1 ← xk + αkpk; (a2)

rk+1 ← Axk+1 − b; (a3)

βk+1 ←
rTk+1Apk

pTkApk
; (a4)

pk+1 ← −rk+1 + βk+1pk; (a5)

k ← k + 1; (a6)

3 until rk 6= 0;

We will show that the directions p0, p1, ..., pn−1 are indeed conjugate, which also implies above algorithm ter-
minates in n steps.

Theorem 1.3. Suppose that the kth iterate generated by the conjugate gradient method is not the solution point
x∗. The following 4 properties hold:

rTk ri = 0, for i = 0, 1, ..., k − 1, (25)

span{r0, r1, ..., rk} = span{r0, Ar0, AAr0, ..., Akr0}, (26)

span{p0, p1, ..., pk} = span{r0, Ar0, AAr0, ..., Akr0}, (27)

5

pTkApi = 0, for i = 0, 1, ..., k − 1. (28)

Therefore, the sequence {xk} converges to x∗ in at most n steps.

Proof. (By hypothesis induction). The equations (26)(27) holds for k = 0, while (28) holds for k = 1. Assuming
now that these equations are true for some k (the induction hypothesis), we show that they continue to hold
for k + 1.

• To prove (26), we need to show that the set on the left-hand side is subset of the set of right-hand side,
and vice versa. Because of the induction hypothesis, we have

rk ∈ span{r0, Ar0, AAr0, ..., Akr0}, pk ∈ span{r0, Ar0, AAr0, ..., Akr0},

and thus
Apk ∈ span{Ar0, AAr0, AAAr0, ..., Ak+1r0} (29)

By applying formula (21) rk+1 = rk + αkApk, we find that

rk+1 ∈ span{r0, Ar0, AAr0, ..., Akr0, Ak+1r0} (30)

By combining this expression with the induction hypothesis for formula (26), we conclude that

span{r0, r1, ..., rk, rk+1} ⊂ span{r0, Ar0, AAr0, ..., Akr0, Ak+1r0}, (31)

To prove that the reverse inclusion holds as well, we use the induction hypothesis on formula (27) to
deduce that

Akr0 ∈ span{r0, Ar0, AAr0, ..., Akr0} = span{p0, p1, ..., pk} (32)

A(Akr0) ∈ span{Ap0, Ap1, ..., Apk} (33)

Ak+1r0 ∈ span{Ap0, Ap1, ..., Apk} (34)

Since by formula (21) rk+1 = rk + αkApk, we have Api = (ri+1 − ri)/αi for i = 0, 1, ..., k, which means
span{Api} = span{ri, ri+1}, therefore it follows that

span{Ap0, Ap1, ..., Apk} = span{r0, r1, ..., rk+1}. (35)

Ak+1r0 ∈ span{r0, r1, ..., rk+1} (36)

By combining this expression with the induction hypothesis for formula(26), we find that

span{r0, Ar0, AAr0, ..., Akr0, Ak+1r0} ⊂ span{r0, r1, ..., rk, rk+1} (37)

Therefore, formula(26) is proved.

• Now we prove (27) continues to hold for k+1

span{p0, p1, ..., pk, pk+1} = span{p0, p1, ..., pk, rk+1} by (24)

= span{r0, Ar0, AAr0, ..., Akr0, rk+1} by hypothesis for (27)
= span{r0, r1, ..., rk, rk+1} by (26)

= span{r0, Ar0, AAr0, ..., Akr0, Ak+1r0} by (26) for k+1

Therefore, (27) is proved, and (26) and (27) also implies

span{r0, r1, ..., rk} = span{p0, p1, ..., pk} (38)

.

• Next, we prove (28) with k replaced by k + 1
According to (24), we multiply (24) by Api, we obtain

pTk+1ApI = −rTk+1Api + βk+1p
T
kApi (39)

6

Since in algorithm we will update βk+1 =
rTk+1Apk

pTkApk
, right-hand side of (38) equals to 0 when i = k. Note

that our induction hypothesis for (28) implies the directions p0, p1, ..., pk are conjugate, so can apply
Theorem 4.2 to deduce that

rTk+1pi = 0, for i = 0, 1, ..., k. (40)

Second, by repeatedly applying (27), we find that for i = 0, 1, ..., k − 1, the following inclusion holds:

Api ∈ A span{r0, Ar0, ..., Air0} = span{Ar0, A2r0, ..., A
i+1r0}

⊂ span{r0, Ar0, A2r0, ..., A
i+1r0}

= span{p0, p1, ..., pi+1} (41)

By (40), we knew that rk+1 is orthogonal with pi for i = 0, 1, 2, ..., k, hence, rk+1 is orthogonal with
span{p0, ..., pi+1} for i = 0, 1, 2, ..., k − 1. And from (41), we got Api ∈ span{p0, ..., pi+1}, which implies
Api is orthogonal with rk+1, that is

rTk+1Api = 0, for i = 0, 1, ..., k − 1, (42)

so the first term in the right-hand side of (39) vanishes for i = 0, 1, ..., k − 1. Because of the induction
hypothesis for (28), the second term equals to 0 as well, and we conclude that

pTk+1Api = 0, for i = 0, 1, ..., k.

Therefore, (28) is proved. That is, the direction set generated by the conjugate gradient method is indeed
a conjugate direction set, so Theorem4.1 tells us that the algorithm terminates in at most n iterations.

• Finally, we prove (25). Because the direction set is conjugate, we have from (16) that rTk pi = 0 for all
i = 0, 1, ..., k − 1 and any k = 1, 2, ..., n− 1. By (24), we find that

pi = −ri + βipi−1 (43)
ri = βipi−1 − pi (44)

so that ri ∈ span{pi, pi−1} for all i = 1, ..., k − 1. We conclude that rk is orthogonal with ri for all
i = 0, 1, ..., k − 1, that is rTk ri = 0. And in algorithm, p0 = −r0, we note that rTk r0 = −rTk p0 = 0.
Therefore, (25) is proved

Remark:The proof of this theorem relies on the fact that the first direction p0 is the steepest descent direction
−r0; in fact, the result does not hold for other choices of p0. By (25), since the gradients rk are mutually
orthogonal, the term "conjugate gradient method" is actually a misnomer.It is the search direction, not the
gradients.

7

By (16) and multiplying (24) by rTk , we get rTk pk = −rTk rk. Second, we have rk+1 = rk + αkApk, and
αkApk = rk+1 − rk, and premultiplying by rTk+1 and pk, we get rTk+1Apk = αkr

T
k+1rk+1 and pTkApk = rTk rk.

Algorithm 2: Conjugate Gradient Descent
1 Given starting point x0; Set r0 ← Ax0 − b, p0 ← −r0, k ← 0; repeat
2

αk ←
rTk rk
pTkApk

; (a1)

xk+1 ← xk + αkpk; (a2)

rk+1 ← rk + αkApk; (a3)

βk+1 ←
rTk+1rk+1

rTk rk
; (a4)

pk+1 ← −rk+1 + βk+1pk; (a5)

k ← k + 1 (a6)

3 until rk 6= 0;

• The advantage is at any given point in this algorithm we never need to know the vectors x, r, and p for
more than the last two iterations.

• In theory, convergence in at most n steps

• In practice, due to rounding errors, CG method can take >> n steps or fail

• with luck (good spectrum of A), good approximation in << n steps

• attractive if matrix-vector products are inexpensive

• The CG methods is recommended only for large problems; otherwise, Gaussian elimination or other
factorization algorithms such as the singular value decomposition are to be preferred, since they are less
sensitive to rounding errors.

8

1.1.4 Rate of Convergence

• In exact arithmetic, the conjugate gradient descent will terminate at the solution at most n iterations.

• When the distribution of the eigenvalues of A has certain favorable features, the algorithm will identify
the solution in many fewer than n iterations.

• Associated with theorem 4.2 expanding subspace minimization property

Krylov Subspace: Krylov subspace of degree k for r0 can be expressed as:

K(r0, k) =: span{r0, Ar0, ..., Akr0}. (45)

From (a2) in algorithm 3 and (27), we have that

xk+1 = x0 + α0p0 + ...+ αkpk

= x0 + γr0 + γ1Ar0 + ...+ γkA
kr0 (46)

for some constants γi. Now we express it in following way,

xk+1 = x0 + P ∗k (A)r0, (47)

which we define
P ∗k (A) = γ0I + γ1A+ ...+ γkA

k (48)

P ∗k (·) is a polynomial of degree k with coefficients γ0, γ1, ..., γk. Like any polynomials, P ∗k can take either a
scalar or a square matrix as its argument.
Recall that quadratic norm (weighted Frobenius norm) used in steepest descent method:

||z||2A = zTAz

We now show among all possible methods whose first k steps are restricted to the Krylov subspace K(r0, k),
algorithm 3 does the best job of minimizing the distance to the solution after k steps, when this distance is
measured by the weighted || · ||A.

• Using the quadratic norm and the definition of f , and the fact that x∗ minimizes f , it is easy to show
that

1

2
||x− x∗||2A =

1

2
(x− x∗)TA(x− x∗) = f(x)− f(x∗) (49)

• Theorem 4.2 states that xk minimizes f over the set x0 + span{p0, p1, ..., pk−1}, which is the same as xk+1

minimizes f over the set x0 + span{p0, p1, ..., pk} = x0 + span{r0, Ar0, ..., Akr0}.

• We know that x∗ minimizes f , and xk+1 minimizes f over set x0 + span{r0, Ar0, ..., Akr0}, therefore xk+1

minimizes 1
2 ||x− x

∗||2A = f(x)− f(x∗) over set x0 + span{r0, Ar0, ..., Akr0}.

• By (47), xk+1 = x0 +P ∗k (A)r0. We are going to find the optimal of Pk so as to minimize the ||xk+1−x∗||2A
that is

min
Pk

||x0 + Pk(A)r0 − x∗||2A (50)

and the optimal Pk is just P ∗k . Therefore, the polynomial P ∗k generated by the CG method is optimal
with respect to quadratic norm.

We exploit this optimality property repeatedly in the remainder of the section.

• Since
r0 = Ax0 − b = Ax0 −Ax∗ = A(x0 − x∗), (51)

we have that

xk+1 − x∗ = x0 + P ∗k (A)r0 − x∗

= x0 − x∗ + P ∗k (A)(A(x0 − x∗)) (52)
= [I + P ∗k (A)A](x0 − x∗) (53)

9

• Let 0 < λ1 ≤ λ2 ≤ ... ≤ λn be the eigenvalues of A, and let v1, v2, ..., vn be the corresponding
orthonormal eigenvectors, so that

A =

n∑
i=1

λiviv
T
i , with vTi vi = 1, vTi vj = 0 for i 6= j (54)

Since the eigenvectors can span the whole space Rn, we can write

x0 − x∗ =

n∑
i=1

δivi (55)

for some coefficients δi.

•
Avi = λivi, (56)

⇒ Pk(A)vi = Pk(λi)vi, i = 1, 2, ..., n (57)

for any polynomial Pk.

• By substituting (55) into (53), we have

xk+1 − x∗ = [I + P ∗k (A)A]

n∑
i=1

δivi (58)

=

n∑
i=1

[vi + P ∗k (A)Avi]δi (59)

=

n∑
i=1

[vi + P ∗k (A)λivi]δi (60)

=

n∑
i=1

[vi + λiP
∗
k (A)vi]δi (61)

=

n∑
i=1

[vi + λiP
∗
k (λi)vi]δi (62)

=

n∑
i=1

[1 + λiP
∗
k (λi)]δivi (63)

• By using (54), we know that

||z||2A = zTAz = zT (

n∑
i=1

λiviv
T
i)z (64)

=

n∑
i=1

λi(z
T viv

T
i z) (65)

=

n∑
i=1

λi(v
T
i z)

T (vTi z) (66)

=

n∑
i=1

λi(v
T
i z)

2 (67)

10

and apply it to z = xk+1 − x∗, we get

||xk+1 − x∗||2A =

n∑
i=1

λi[v
T
i (xk+1 − x∗)]2 (68)

=

n∑
i=1

λi[v
T
i (

n∑
i=1

(1 + λiP
∗
k (λi))δivi)]

2 (69)

=

n∑
i=1

λi[v
T
i (1 + λiP

∗
k (λi))δivi)]

2 (70)

=

n∑
i=1

λi[(1 + λiP
∗
k (λi))δiv

T
i vi)]

2 (71)

=

n∑
i=1

λi[1 + λiP
∗
k (λi))δi1]2 (orthonormal eigenvectors property)

=

n∑
i=1

λi[1 + λiP
∗
k (λi))]

2δ2i (72)

(73)

• By (50), we can convert the problem into

||xk+1 − x∗||2A = min
PK

n∑
i=1

λi[1 + λiP
∗
k (λi))]

2δ2i (74)

• By extracting the largest of the terms [1 + λiP
∗
k (λi))]

2 from above expression, we obtain that

||xk+1 − x∗||2A ≤ min
PK

max
1≤i≤n

[1 + λiP
∗
k (λi))]

2
(n∑
j=1

λjδ
2
j

)
(75)

= min
PK

max
1≤i≤n

[1 + λiP
∗
k (λi))]

2||x0 − x∗||2A (76)

where we have used the fact that, (by (55) and (67))

||x0 − x∗||2A =

n∑
j=1

λj(δivi)
2 (77)

=

n∑
j=1

λj(v
T
j δjvj)

2 (78)

=

n∑
j=1

λjδ
2
j (79)

• You can find that in equations (75) (76), there is a relation between xk+1 − x∗ and x0 − x∗, and it allows
us to quantify the convergence rate of the CG method by estimating the non-negative scalar quantity

min
Pk

max
1≤i≤n

[1 + λiPk(λi)]
2 (80)

In other words, the polynomial Pk effects the convergence rate, and we need to search for a Pk to make
this expression as small as possible.

Theorem 1.4. If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution in at
most r iterations.

Proof. We will show that the size of distinct eigenvalues will effect the polynomial Pk we are searching for in
formula (80), and therefore effect the convergence rate of CG method.

• Suppose that the eigenvalues λ1, λ2, ..., λn only exists r distint values θ1 < θ2 < ... < θn. We define a
polynomial Qr(λ) by

Qr(λ) =
(−1)r

θ1θ2 · · · θr
(λ− θ1)(λ− θ2) · · · (λ− θr). (81)

Note that, Qr(λi) = 0 for i = 1, 2, ..., n and Qr(0) = 1.

11

• We can deduce that Qr(λ)−1 is a polynomial of degree r with a root at λ = 0, so by polynomial division,
the function P̄r−1 defined by

P̄r−1(λ) =
Qr(λ)− 1

λ
(82)

is a polynomial of degree r − 1.(Degree means the highest power of λ in polynomial)

• By setting k = r − 1 in (80), we have

0 ≤ min
Pr−1

max
1≤i≤n

[1 + λiPr−1(λi)]
2 (83)

≤ max
1≤i≤n

[1 + λiP̄r−1(λi)]
2 (84)

= max
1≤i≤n

[1 + λi
Qr(λi)− 1

λi
]2 (85)

= max
1≤i≤n

Q2
r(λi) (86)

= 0

• Hence, the non-negative scale constant of (80) is zero for the value k = r − 1, so we have that (76)
||xr − x∗||2A = 0, and therefore xr = x∗, as claimed.

12

1.2 The Nonlinear Conjugate Gradient Method
1.2.1 Motivation

Algorithm 3 can be viewed as a minimization algorithm for the convex quadratic function f defined by (2).
It is natural to ask whether we can adapt the approach to minimize general convex functions, or even general
nonlinear functions f .

1.2.2 The Fletcher-Reeves Method

Extend the conjugate gradient method to nonlinear functions f (differentiable) by making 2 simple changes in
algorithm 3

• for the step length αk (which minimizes f along the search direction pk), we need to perform a line search
that identifies an approximate minimum of the nonlinear function f along pk.

• the residual r (which is simply the gradient of f in algorithm 3) must be replaced by the gradient of the
nonlinear objective f .

Algorithm 3: The Fletcher-Reeves Method
1 Given starting point x0; Evaluate f0 = f(x0),∇f0 = ∇f(x0); Set p0 ← −∇f0, k ← 0; repeat
2 Compute αk with line search and set xk+1 = xk + αkpk; Evaluate ∇fk+1

βFRk+1 ←
∇fTk+1∇fk+1

∇fTk ∇fk
; (a1)

pk+1 ← −∇fk+1 + βFRk+1pk; (a2)

k ← k + 1; (a3)

3 until ∇fk 6= 0 or ||∇fk||2 ≥ ε;

Observations of FR Update

• First iteration is a gradient step; practical implementations restart the algorithm by taking a gradient
step, for example, every n iterations.

• If we choose f to be strongly convex quadratic, and use exact line search to find αk = argmint f(xk+tpk),
this algorithm reduces to the linear conjugate gradient method (algorithm 3).

• Good for large scale optimization problem, because each iteration only requires the evaluation of its
objective function and gradient. No matrix operations are required for the step computation, and just
few vectors of storage are required.

• In algorithm 3, it needs matrix-vector computation to get rk+1, but here we only need to compute the
gradient of f(xk+1).

• The choice of line search parameter α is important, because it may effect that the search direction pk+1

in (a4) of algorithm 4 fails to be a descent direction.

• By taking the inner product of (a2) in algorithm 4 with the gradient vector ∇f(k + 1), we obtain

∇fTk+1pk+1 = −||∇fk+1||2 + βFRk+1∇fTk+1pk (87)

If the line search is exact, so that αk is a local minimizer of f along the direction pk, that is make
derivative of f(xk + αkpk) = f(xk+1) respect to αk equal to 0, we get ∇fTk+1pk = 0. We find that (87)
∇fTk+1pk+1 < 0, so that pk+1 is indeed a descent direction. If the line search is not exact, we need to
require the step length αk to satisfy the strong Wolfe conditions, which are

f(xk + αkpk) ≤ f(xk) + c1αk∇fTk pk (88)

|∇f(xk + αkpk)T pk| ≤ −c2∇Tk pk (89)

where 0 < c1 < c2 < 1/2. (Backtracking line search).

13

1.2.3 The Polak-Ribier Method and Variants

There are many variants of the Fletcher-Reeves method that differ from each other mainly in the choice of the
paramemter βk.
Polak-Ribier:

βPRk =
∇fTk+1(∇fk+1 −∇fk)

||∇fk||2
(90)

Hestenes-Stiefel:

βHSk =
∇fTk+1(∇fk+1 −∇fk)

(∇fk+1 −∇fk)T pk
(91)

Those formulas are equivalent for quadratic f and exact line search.

1.2.4 Applications in Optimization

Nonlinear conjugate gradient method

• extend linear CG method to nonquadratic functions

• local convergence similar to linear CG

• limited global convergence theory

Inexact and truncated Newton method

• use conjugate gradient method to compute (approximate) Newton step

• less reliable than exact Newton methods, but handle very large problems

1.2.5 Global Convergence Rate

14

	Conjugate Gradient Method
	The Linear Conjugate Gradient Method
	Objective Function
	Conjugate Direction Method
	Conjugate Gradient Method
	Rate of Convergence

	The Nonlinear Conjugate Gradient Method
	Motivation
	The Fletcher-Reeves Method
	The Polak-Ribier Method and Variants
	Applications in Optimization
	Global Convergence Rate

