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1 Conjugate Gradient Method

1.1 The Linear Conjugate Gradient Method
1.1.1 Objective Function
The conjugate gradient method is an iterative method for solving a linear system of equations
Ax =1 (1)

where A is an n X n symmetric positive definite matrix. In general, the solution z lies at the intersection point
of n hyperplanes.
The problem is equivalent to minimize the following convex quadratic function:

min f(z) =: %xTAx — vz (2)

And the gradient of f(z) equals the residual of the linear system, that is,
Vi(x)=Az—b=r(z) (3)
so when x = x;, we have

T = A{L‘k —-b (4)

1.1.2 Conjugate Direction Method

Conjugacy of A Set of Vectors: A set of nonzero vectors {po,p1,...,pi} is said to be conjugate with respect to
the symmetric positive definite matrix A (or called A-orthogonal) if

piTApj =0, forall i#£j (5)

Note that, any set of vectors satisfying this property is also linear independent or orthogonal.
The importance of conjugacy is that we can minimize f(z) in n steps by successively minimizing it along the
individual directions in a conjugate set.

Conjugate Direction Method: Given a starting point 2o € R™ and a set of conjugate directions {pg, p1, ..., Pn—1},
let’s generate the sequence {z;} by setting:

Tpt1 = Tk + QkDk (6)

where « is the one-dimensional minimizer of the quadratic function f(-) along xj + aypg, that is

. T;{pk (7)
pE Apr

oy = argmin f(zy + apy) =
«

This is one of examples of exact line search method.

Theorem 1.1. For any xo € R™ the sequence {xy} generated by the conjugate direction algorithm(formula 6
and 7) converges to the solution x* of the linear system (formula 1) in at most n steps.



Proof. Let us first compute the ay:

1
fl@r+ apr) = 5 (@ + ape) " Az + apr) — b (zx + apy)
2
1 1 1 1
= §a2p£Apk + §ozfopk + iapZAxk + izfAzk — bz, — b  apy

1 1
= §a2p£Apk + (ax{Apk - aprk) + (gfoxk - bTxk)

1
= 50" Apk + a@ A = b )px + f(wk)

1
= §a2p;‘gApk + (AT = b) i + flan)

1
504219514101@ + Az, — b) 'y + f(zk)

1
= §a2p;{Apk + an(xk)TPk: + flar)

Thus, let
[ (@i + apr) = o®pf Ape + V(i) 'pr =0

we obtain:
BN {0 T
Py Apk i, Api
Now note that, the set of conjugate direction {pg,p1,...,Pn—1} is given. Since the directions are linearly inde-
pendent, they must span the whole space R™. Hence, we can write

a* —xg = 00opo + O1P1 + ... + On—1Pn—1 (8)
for some choice of scalars ;. And since

Tp = X + QoPo + a1P1 + ...+ Qp—1Pn—1 (9)
generated by formula (6) and (7), the result is established if we can show that o}, = ay.
By premultiplying this expression by pf A (0 < k < n — 1) and using the conjugacy property (formula 5), we

obtain
pi A(z* —20) = pt A(oopo + 01p1 + oo + Op1Pn_1) = D} AokDr (10)

pi A(z* — o)
Pk Api
If 2 is generated by formula (6) and (7), then we have

(11)

O —

TK = To + aopo + 1p1 + - + Up_1Pr—1 (12)

By premultiplying this expression by pf A and using the conjugacy property, we have that

p{A(xk —29)=0 = pgAxk = p{Amo (13)
and therefore
Ph A — o) = pL A(x* — x1) = pi (b — Azy) = —pf i (14)
TA * T
o = Pi (;E Zo) = fk Tk _ oy (15)
Dy, ADk, Pi, Ak
O

Interpretation:
If the matrix A in formula (2) is diagonal, the contours of the function f(-) are ellipses whose axes are aligned
with coordinate directions.

Theorem 1.2 (Expanding Subspace Minimization). Let zy € R™ be any starting point and suppose that the
sequence {x} is generated by the conjugate direction algorithm formula(6)(7). Then

pi=0, for i=0,1,...k—1, (16)
and xy, is the minimizer of f(x) = sx¥ Az — bTx over the set

{ZL’|£K :$0+3Pan{p07p17-~7pk71}} (17)



[t]

Figure 1: Successive minimizations along the coordinate directions find the minimizer of a quadratic with a
diagonal Hessian in n iterations. But if A is not diagonal, then it may not find the minimizer in n iterations.
We have to use some tricks so as to make it diagonal to use this method(See textbook for details)

Proof. We begin by showing that a point & minimizes f over the set (17) if and only if
r(2)Tp; =0, for each i =0,1,....,k — 1,

and then we will show that zj satisfies r(z;)?p; = 0, which implies that zj is the minimizer over the set (17).
First, minimizing f(x) s.t. « € g + span{po, p1, ..., Pr—1} is equivalent to minimizing

h((f) = f(.’[o —+ agoPo + ...+ O'kflpkfl) = f(£C0 —+ PU) st. o€ Rk (18)

where 0 = (09, ...,01_1)" and P = (pg, ...,px_1) € R"*¥,
Since f is strictly convex, h(o) is also a strictly convex quadratic, and it has a unique minimizer o* that satisfies

Vh(c*) = PV f(xo + Po*) =0 (19)
This equation implies that

pIV f(xo+ Po*) = pI'Vf(xo+oipo+ ... +0f_1pr_1) =0 foreach i=0,1,...,k—1 (20)

if £ minimizes the f, then & = x¢ + o§po + ... + 0} _1px—1, therefore Vf(xzo + ogpo + ... + 0} _1pk—1) = 1(&)
according to formula (3) and r(2)Tp; = 0, as claimed.

We now use induction to show that x; satisfies TkTpi = 0. For the case £k = 1, we have from the fact that
T1 = T + qppo minimizes f along direction py that ri'py = 0, since h(ap) = f(zo + aopo) and Vh(ag) =
poV f(zo + aopo) = ptr1 = ripo = 0. Let us now make the induction hypothesis, namely, that r} ,p; = 0 for
i=0,1,...,k — 2. According to formula 4 and 6, we have

Tk =Tk—1 + ak—1Apr—1 (21)
and according to formula 7, we have
T
apg = — Pr—1Tk—1
Pz_lApkq
so that
Ph_1Th = Pi_1Th—1 + Qh_1Pp_1Apr—1 =0 (22)

Meanwhile, for the other vectors p;,i =0,1,..., k — 1, we have

plry =plre_1 +ap_1pf App_1 =0 (23)



where pI'r;,_1 = 0 because of the induction hypothesis and p? Apy_1 = 0 because of conjugacy of the vectors
pi. Therefore, we have shown r%pi =0fori=0,1,....k — 1.
O

Remark: the proof shows an important property that the current residual rj is orthogonal to all previous
search directions, as expressed in formula (16).



1.1.3 Conjugate Gradient Method
Problem: for conjugate direction method,

e the conjugate direction set {pg, pym..., pn—1} is given at the beginning, and there are many ways to choose
it.

e For instance, the eigen-vectors vy, va, ..., v, of A are mutually orthogonal as well as conjugate with respect
to A, so these could be used as the vector {po,p1, ..., Pn_1}-

e t00 expensive to compute the complete set of eigenvectors.

e Gram-Schmidt orthogonalization process, but still requires to store the entire direction set.
Intuition: the conjugate gradient method is a conjugate direction method with a very special property:

e can compute a new vector pi by using only previous vector pg_1.

e it does not need to know all the previous elements pg, p1, ..., pr—2 of the conjugate set

e p; is automatically conjugate to all previous vectors.

e requires only little storage and computation.

In the conjugate gradient method,
Pk = —Tk + BkPr—1, (24)

where —ry, is the steepest descent direction for the function f(-) (by formula 3), ps_; is the previous direction,
and S is to be determined by the requirement that py_; and py must be conjugate with respect to A or called
A-orthogonal (like the secant condition for Quasi-newton method).

By premultiplying formula(24) by pf ;A and imposing the condition pf | Apy = 0, we find that

Ph_1Apk = pj_1 A(—7k + Brpe-1)
0= pi_1A(—7k) + Pi_1 ABkpr—1
Tk Apr—1 = BrPi_1 APk
Br = ngApkfl
Pr_1APK-1

Algorithm 1: Conjugate Gradient Descent - Preliminary Version

1 Given starting point xg; Set rg < Axg — b, py + —rg, k < 0; repeat

2
T
Tk Pk
Qg+ — ; (al)
Pt Apy,
Th41 < Tk + QkPk; (a2)
Tet1 — Azgir — b; (a3)
i Api
Brg1  —H—; (ad)
pi Apy,
Pyl < —Thy1 + Beg1Pr; (ab)
k< k+1; (ab)

3 until r; # 0;

We will show that the directions pg, p1,...,pn—1 are indeed conjugate, which also implies above algorithm ter-
minates in n steps.

Theorem 1.3. Suppose that the k'" iterate generated by the conjugate gradient method is not the solution point

*

x*. The following 4 properties hold:
=0, fori=0,1,...,k—1, (25)
span{ro,r1, ...,mx} = span{ry, Arg, AArg, ..., A¥rq}, (26)
span{po, p1, ..., pr } = span{rg, Arg, AArg, ..., AFr}, (27)



ptAp; =0, fori=0,1,...k—1. (28)
Therefore, the sequence {x} converges to x* in at most n steps.

Proof. (By hypothesis induction). The equations (26)(27) holds for k = 0, while (28) holds for k¥ = 1. Assuming
now that these equations are true for some k (the induction hypothesis), we show that they continue to hold
for k+ 1.

e To prove (26), we need to show that the set on the left-hand side is subset of the set of right-hand side,
and vice versa. Because of the induction hypothesis, we have

T € span{rg, Arg, AArg, ---»AkTo}y P € span{rg, Arg, AArg, -~-,Ak7’o},

and thus
Apy. € span{Arg, AArg, AAAry, ..., Akﬂro} (29)

By applying formula (21) rp+1 = ¢ + ax Apg, we find that
Tr+1 € span{rg, Arg, AArg, ..., Akro,AkHTo} (30)
By combining this expression with the induction hypothesis for formula (26), we conclude that
span{ro,r1, ...,Tk, Tk+1} C span{rg, Arg, AAro, ..., AkTO,AkHTO}, (31)

To prove that the reverse inclusion holds as well, we use the induction hypothesis on formula (27) to
deduce that

AFry € span{rg, Arg, AArg, ...7Ak7'0} = span{po, p1, .-, Pk } (32)
A(A*ro) € span{Apo, Ap, ..., Api} (33)
AkH?’o € span{Apo, Ap1, ..., Api} (34)

Since by formula (21) 74411 = 7% + arApg, we have Ap; = (ri41 — ;) /ay for i = 0,1, ..., k, which means
span{Ap;} = span{r;,riy1}, therefore it follows that

span{Apo, Ap1, ..., Api} = span{ro,r1, ..., Tk41}. (35)

A¥F g € span{ro, r1, oy Tig1 } (36)

By combining this expression with the induction hypothesis for formula(26), we find that
span{ry, Arg, AArg, ..., A¥rq, A rg} € span{ro, 71, ..., "k, Tre1} (37)
Therefore, formula(26) is proved.

e Now we prove (27) continues to hold for k+1

span{po, P1; - Pks Pkt1} = SPan{po,p1, ..., P, Tk41} by (24)
= span{ry, Arg, AArg, ..., A¥rg, 141} by hypothesis for (27)
= span{ro, 1, .., Tk, Tkt1} by (26)

= span{ry, Arg, AArg, ..., A¥rg, A¥*1rg} by (26) for k+1

Therefore, (27) is proved, and (26) and (27) also implies

span{ro,rl,...,rk} = Span{p()apla"'apk} (38)

e Next, we prove (28) with k replaced by k + 1
According to (24), we multiply (24) by Ap;, we obtain

Pir1APr = =741 Api + Bie1p Api (39)



T
Tk+1APk,

+-—, right-hand side of (38) equals to 0 when i = k. Note
Py, APk

that our induction hypothesis for (28) implies the directions pg,p1, ..., px are conjugate, so can apply
Theorem 4.2 to deduce that

Since in algorithm we will update B =

TkTsz‘ =0, for 1=0,1,...,k. (40)
Second, by repeatedly applying (27), we find that for ¢ = 0,1, ...,k — 1, the following inclusion holds:
Ap; € A span{rg, Arg, ..., A'rg} = span{Arg, A%rq, ..., A" 'ro}
C span{rg, Arg, A%rg, ..., A7 rg}
= span{po, p1, ..., Pit1} (41)

By (40), we knew that rgy; is orthogonal with p; for ¢ = 0,1,2,...,k, hence, rpy1 is orthogonal with
span{po, ...,pi+1} for i = 0,1,2,....k — 1. And from (41), we got Ap; € span{py, ..., pi+1}, which implies
Ap; is orthogonal with 741, that is

riAp; =0, for i=0,1,..,k—1, (42)

so the first term in the right-hand side of (39) vanishes for ¢ = 0,1,...,k — 1. Because of the induction
hypothesis for (28), the second term equals to 0 as well, and we conclude that

Pi1Api =0, for i=0,1,...k.

Therefore, (28) is proved. That is, the direction set generated by the conjugate gradient method is indeed
a conjugate direction set, so Theorem4.1 tells us that the algorithm terminates in at most n iterations.

e Finally, we prove (25). Because the direction set is conjugate, we have from (16) that rIp; = 0 for all
1=0,1,..,k—1and any k =1,2,...,n — 1. By (24), we find that

pi = =i + Bipi—1 (43)
i = Bibi—1 — pi (44)

so that r; € span{p;,p;—1} for all i = 1,....,k — 1. We conclude that rj is orthogonal with r; for all
i =0,1,....k — 1, that is 7{'r; = 0. And in algorithm, py = —rq, we note that rirq = —rlpy = 0.
Therefore, (25) is proved

O

Remark:The proof of this theorem relies on the fact that the first direction pg is the steepest descent direction
—rp; in fact, the result does not hold for other choices of pg. By (25), since the gradients rj are mutually
orthogonal, the term "conjugate gradient method" is actually a misnomer.It is the search direction, not the
gradients.



By (16) and multiplying (24) by rf, we get rfpy = —rfr,. Second, we have ry41 = r, + apApy, and
apApr = Tgp41 — Tk, and premultiplying by TE_H and pi, we get T,{_HApk = asz:,'_lrk;Jr] and pzApk = r,::rk.

Algorithm 2: Conjugate Gradient Descent

1 Given starting point xg; Set rg < Axg — b, pg + —rg, k < 0; repeat

2
T
’I“k TEk
Qp < ; (al)
pi Apy,
Tpy1 ¢ Tk + kP (a2)
Tha1 < Tk + axApy; (a3)
T
T Tk+1
Brr + 21— (ad)
Tk Tk
Pr41 & —Thy1 + Beg1Pr; (a5)
k< k+1 (ab)

3 until r; # 0;

e The advantage is at any given point in this algorithm we never need to know the vectors z,r, and p for
more than the last two iterations.

e In theory, convergence in at most n steps

e In practice, due to rounding errors, CG method can take >> n steps or fail
e with luck (good spectrum of A), good approximation in << n steps

e attractive if matrix-vector products are inexpensive

e The CG methods is recommended only for large problems; otherwise, Gaussian elimination or other
factorization algorithms such as the singular value decomposition are to be preferred, since they are less
sensitive to rounding errors.



1.1.4 Rate of Convergence

e In exact arithmetic, the conjugate gradient descent will terminate at the solution at most n iterations.

e When the distribution of the eigenvalues of A has certain favorable features, the algorithm will identify
the solution in many fewer than n iterations.

e Associated with theorem 4.2 expanding subspace minimization property

Krylov Subspace: Krylov subspace of degree k for rg can be expressed as:

K(ro, k) =: span{rg, Arg, ..., A¥r}. (45)
From (a2) in algorithm 3 and (27), we have that

Tp+1 = To + qopo + ... + AkPi
= x0 + Y70 + 11 A7r0 + .. + V£ AFTg (46)

for some constants ;. Now we express it in following way,
Tp1 = xo + Py (A)ro, (47)

which we define
Pr(A) =yl + A+ ...+ A* (48)

Py(-) is a polynomial of degree k with coefficients v, 1, ..., 7. Like any polynomials, P} can take either a
scalar or a square matrix as its argument.
Recall that quadratic norm (weighted Frobenius norm) used in steepest descent method:

][5 = 2" Az

We now show among all possible methods whose first & steps are restricted to the Krylov subspace K(rg, k),
algorithm 3 does the best job of minimizing the distance to the solution after k steps, when this distance is
measured by the weighted || - || 4.

e Using the quadratic norm and the definition of f, and the fact that * minimizes f, it is easy to show
that

1 1
§|I$*x*lli: §(x*$*)TA(ﬂf*fE*):f(ff)*f(r*) (49)
e Theorem 4.2 states that x; minimizes f over the set x¢ + span{po, p1, ..., Pk—1}, which is the same as x4,
minimizes f over the set zg + span{pg, p1, ..., pr } = 2o + span{rg, Arg, ..., A¥ry}.

e We know that 2* minimizes f, and x4, minimizes f over set zo + span{rg, Ar, ..., A¥rq}, therefore x5 1
minimizes $||z — 2*[|% = f(z) — f(z*) over set zg + span{ro, Arq, ..., AFro}.

e By (47), )41 = zo+ P{ (A)ro. We are going to find the optimal of P so as to minimize the ||zy11 —2*||}
that is
n]ljinHa?o + Pu(A)ro — z*||A4 (50)
k

and the optimal Py is just P;. Therefore, the polynomial P} generated by the CG method is optimal
with respect to quadratic norm.

We exploit this optimality property repeatedly in the remainder of the section.
e Since

ro = Axg — b= Axg — Az = A(zo — z¥), (51)
we have that

Tpe1 — " =z + Py (A)rg — x”
xg— " + Pr(A)(A(zg — 27)) (52)
[+ P (A)AJ(zo — 7) (53)



e Let 0 < A\ < Ay < ... £ )\, be the eigenvalues of A, and let vy,vs,...,v, be the corresponding
orthonormal eigenvectors, so that

n
A:Z)\ww?, with o] v; = 1,0] v; = 0 for i # j

=1

Since the eigenvectors can span the whole space R™, we can write

for some coefficients d;.

for any polynomial P.

n
o — ¥ = E 51’”2’
i=1

Av; = Ny,

:>Pk(A)’U1 :Pk()\i)viv 7;:172,...

e By substituting (55) into (53), we have

e By using (54), we know that

Tr1 — 2" = I+ PL(A)A] D S,
=1

|

[Ui + Pl: (A)A’UZ](SZ

N
Il
-

I
M3

@
Il
-

I
)
ilngh
i

<
3

[U,‘ + )\zP]:(/\z)'Uz}(Sz

&
Il
_

|

@
Il
-

|23 = 2T Az = zT(Z vl )z
i=1
= Z (2T vl 2)
i=1
n
=Y Xl )" (v]2)
i=1

= i (vl 2)?
i=1

10

,n

(54)

(55)



and apply it to z = xx41 — =¥, we get

|p1 — 2|5 = ZA (@41 —2*))? (68)

= En: Ailof (1+ NPy (X))d5vi)]? (70)
=

= Xj; N1+ NP (X))o vi)]® (71)

= Z N[+ X PE(N))6;1)? (orthonormal eigenvectors property)

:Z)\[1+>\Pk( ))]262 (72)
. (73)

e By (50), we can convert the problem into
|z — 2|3 = Igj(n;/\ + AP (M)))?07 (74)

e By extracting the largest of the terms [1 + A; P;();))]? from above expression, we obtain that

s = 2|3 < min max [14+ A5 (A (ZA ?) (75)
= min max [1+ AP (A )I? IIwo — ()% (76)

where we have used the fact that, (by (55) and (67))

llzo — 2*[1% =) Aj(6iv:)° (77)
=1

=> X(v] 8;v;) (78)
j=1

= \6; (79)
j=1

e You can find that in equations (75) (76), there is a relation between x;41 — z* and xg — 2, and it allows
us to quantify the convergence rate of the CG method by estimating the non-negative scalar quantity

min max [1 4+ \; P (\)]? (80)

P, 1<i<n

In other words, the polynomial P effects the convergence rate, and we need to search for a P to make
this expression as small as possible.

Theorem 1.4. If A has only r distinct eigenvalues, then the CG iteration will terminate at the solution in at
most v iterations.

Proof. We will show that the size of distinct eigenvalues will effect the polynomial P, we are searching for in
formula (80), and therefore effect the convergence rate of CG method.

e Suppose that the eigenvalues Aq, Ag, ..., A, only exists r distint values 6; < 03 < ... < 60,,. We define a
polynomial @, (\) by

@0 = a0 06 (s1)

Note that, Q. (A\;) =0for i =1,2,...,n and Q,(0) = 1.

11



e We can deduce that @ (\) — 1 is a polynomial of degree r with a root at A = 0, so by polynomial division,
the function P._; defined by

_ r(A)—1
Py = 2L (52)
is a polynomial of degree r — 1.(Degree means the highest power of A in polynomial)
e By setting k = r — 1 in (80), we have
< mi . )12
0< min lrél%xn[l + NiPr_1(N\)] (83)
< P )12
< 1?%)(”[1 + XN Pr_1(\)] (84)
o Qr()‘i) —1 2
= 1I£zagxn[1 + A /\71] (85)
_ 20y,
= max Qr(\) (86)
=0

e Hence, the non-negative scale constant of (80) is zero for the value k = r — 1, so we have that (76)
||z, — x*||3 = 0, and therefore z, = z*, as claimed.

O
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1.2 The Nonlinear Conjugate Gradient Method
1.2.1 Motivation

Algorithm 3 can be viewed as a minimization algorithm for the convex quadratic function f defined by (2).
It is natural to ask whether we can adapt the approach to minimize general convex functions, or even general
nonlinear functions f.

1.2.2 The Fletcher-Reeves Method

Extend the conjugate gradient method to nonlinear functions f (differentiable) by making 2 simple changes in
algorithm 3

e for the step length «y (which minimizes f along the search direction py), we need to perform a line search
that identifies an approximate minimum of the nonlinear function f along py.

e the residual r (which is simply the gradient of f in algorithm 3) must be replaced by the gradient of the
nonlinear objective f.

Algorithm 3: The Fletcher-Reeves Method
1 Given starting point xg; Evaluate fo = f(x0), Vfo = Vf(zo); Set pg < —V fo, k + 0; repeat

2 Compute oy, with line search and set xp11 = xx + agpr; Evaluate V fi11
VAV e
BFR « + : al
k+1 vfgvfk ( )
D1 < =V o1 + BEiDk; (a2)
k<« k+1; (a3)

3 until Vfi, #0 or ||V fil|l2 > ¢
Observations of FR Update

e First iteration is a gradient step; practical implementations restart the algorithm by taking a gradient
step, for example, every n iterations.

e If we choose f to be strongly convex quadratic, and use exact line search to find «y = argmin; f(xg +tpk),
this algorithm reduces to the linear conjugate gradient method (algorithm 3).

e Good for large scale optimization problem, because each iteration only requires the evaluation of its
objective function and gradient. No matrix operations are required for the step computation, and just
few vectors of storage are required.

e In algorithm 3, it needs matrix-vector computation to get r;4+1, but here we only need to compute the
gradient of f(zg41).

e The choice of line search parameter « is important, because it may effect that the search direction pjy1
in (ad) of algorithm 4 fails to be a descent direction.

e By taking the inner product of (a2) in algorithm 4 with the gradient vector V f(k + 1), we obtain

Vs = =V frsrll® + BEAV AL apn (87)

If the line search is exact, so that «j is a local minimizer of f along the direction pg, that is make
derivative of f(zx + arpr) = f(@r+1) respect to oy equal to 0, we get VL pr = 0. We find that (87)
Vf,a_lpk_,_l < 0, so that pp41 is indeed a descent direction. If the line search is not exact, we need to
require the step length oy to satisfy the strong Wolfe conditions, which are

f(@r + apr) < f(2r) + 1wV il pi (88)
IV f(zk + arpr) prl < —c2Vip (89)

where 0 < ¢; < ¢ < 1/2. (Backtracking line search).
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1.2.3 The Polak-Ribier Method and Variants

There are many variants of the Fletcher-Reeves method that differ from each other mainly in the choice of the
paramemter S.
Polak-Ribier:

PR __ vfg+1(vfk+l - ka)

NN (50)

Hestenes-Stiefel:
HS _ VI (V frgr = Vi)
g (Vs = Vi) pr

Those formulas are equivalent for quadratic f and exact line search.

(91)

1.2.4 Applications in Optimization

Nonlinear conjugate gradient method

e extend linear CG method to nonquadratic functions
e local convergence similar to linear CG
e limited global convergence theory

Inexact and truncated Newton method

e use conjugate gradient method to compute (approximate) Newton step

e less reliable than exact Newton methods, but handle very large problems

1.2.5 Global Convergence Rate
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