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Energy-Based Models (EBMs) capture dependencies between variables by association a scalar energy to each
configuration of the variables.

• Inference consists in fixing the value of observed variables and finding configurations of the remaining
variables that minimize the energy. For example, the variables X are observed, and we would like to find
the configurations of labels Y , such that E(X,Y ) is minimum.

• Learning consists in finding an energy function in which observed configurations of the variables are
given lower energies than unobserved ones. Why ? How could you know the energy of unobserved variables
? We would like the observed configuration to be the lowest, otherwise, there exists a better ground-truth
labels, where we assume nothing wrong on our ground-truth labels labeled by human.

• A loss functional, minimized during learning, is used to measure the quality of the available energy
functions. We can use different energy functions and loss functionals for different problems.

Advantages of EBMs:

• Probabilistic models must be properly normalized, which sometimes requires evaluating intractable inte-
grals over the space of all possible variable configurations. Since EBMs have no requirement for
proper normalization, this problem is naturally circumvented. For example, the loopy belief
propagation can be understood as minimizing the Bethe Approximation on Gibbs Free energy.

• EBMs can be viewed as a form of non-probabilistic factor graphs, and they provide considerably
more flexibility in the design of architectures and training criteria than probabilistic approaches.

• Many popular linear models can be reformulated in the EBM framework, such as max-margin Markov
networks and conditional random fields.

1 Energy-Based Inference

Once we have learned the energy function E(Y,X), which measures the ”goodness” of each possible configuration
of X and Y , we can find the optimal configurations for unobserved Y given the observed input X that minimize
the E(Y,X):

Y ∗ = arg min
Y ∈Y

E(Y,X) (1)

When the size of the set Y is small, we can simply compute E(Y,X) for all possible values of Y ∈ Y and pick
the smallest. When the cardinality or dimension of Y is large, exhaustive search impractical, a specific strategy,
called the inference procedure, must be employed to find the Y that minimize E(Y,X), which has no guarantee
on global optimal solution. We can use ”smart” inference procedures, such as min-sum, Viterbi, min-cut, belief
propagation, gradient descent, etc ..
Understanding the structure is a global decision in which several local decisions play a role but there are
mutual dependencies on their outcome. It is essential to make coherent decisions in a way that takes the inter-
dependencies of variables Y into account. CRFs allow manually define some feature functions that interconnect
the unobserved variables, or capture the global structure, right ? From the perspective of energy-based learning,
we can view that

2 Converting Energies to Probabilities

Energies are uncalibrated measured in arbitrary units, thus the energies of two separately-trained systems cannot
be combined directly. But we can calibrate energies by turning them into probabilities first. The simplest and
most common method for turning a collection of arbitrary energies into a collection of numbers between 0 and
1 whose sum (or integral) is 1 is through the Gibbs distribution.

P (Y |X) =
e−βE(Y,X)∫

y∈Y e
−βE(Y,X)

(2)
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where β is an arbitrary positive constant. It should be noted that sometimes the denominator is intractable,
thus we should avoid probabilistic modeling when the application does not require. Energy model is more
general than probabilistic model.

3 Energy-Based Training

3.1 Architecture

We are given a set of training data S = {(Xi, Y i) : i = 1...P}, where Xi is the input for i− th training sample,
and Y i is the corresponding desired answer. Training is to find a best energy function in a family of functions
E , indexed by a parameter W

E = {E(W,Y,X) : W ∈ W} (3)

How can we decide which energy function is the best ? We need a way to assess the quality of any particular
energy function, based solely on two elements: the training set, and our prior knowledge about the
task. The quality measure is called the lossfunctional and denoted L(E,S). For example, the architecture of
the neural network decide the family of function, and we can decide the loss function as L(W,S). The learning
problem is simply to find the W that minimizes the loss

W ∗ = min
W∈W

L(W,S) (4)

For most cases, the loss functional is defined as follows:

L(E,S) =
1

P

P∑
i=1

L(Y i, E(W,Y, Xi)) +R(W ) (5)

where E(W,Y, Xi) is the predicted output and Y i denotes the desired output, and R(W ) is the regularizer, which
can be used to embed our prior knowledge about which energy functions in our chosen family are preferable to
others before we see the training data. What are the prior knowledge on the neural network model ? Fine-tuning
on the pre-trained model ?

3.2 Loss Functional

A loss functional should be designed in a way such that energy functions that give the lowest energy to the
correct answer and higher energy to all other (incorrect) answers. Conversely, energy functions that do not
assign the lowest energy to the correct answers would have a high loss. Since the inference algorithm selects the
Y with the lowest energy, the learning procedure must shape the energy surface so that the desired value of Y
has lower energy than all other (undesired) values.

Figure 1: Y i denotes by the correct answer; Ȳ i denotes by the most offending incorrect answer, i.e. the answer
that has the lowest energy among all the incorrect answers. To define this answer in the continuous case,
we can simply view all answers within a distance ε of Y i as correct, and all answers beyond that distance as
incorrect. With a properly designed loss function, the learning process will push down on E(W,Y i, Xi) and
pull up on the incorrect energies, particularly on E(W, Ȳ i, Xi). However, the loss function must satisfy
some conditions in order to be guaranteed to shape the energy surface correctly.

When we optimize an energy-based model, minimizing the energy of a given data is usually inappropriate. In
particular, such an objective function may be unbounded. It may not distinguish two patterns, one is good and
the other is very good, as both of the two patterns have the minimum energy.
An objective function of an energy-based model should have a contrastive term, which natually appear in the
objective function of a probabilistic model. For example, to maximize the average log-likelihood or minimize
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the average negative log-likelihood of a set of configurations D with respect to a Boltzmann machine is given
by

− 1

|D|
∑
x∈D

logPθ(x) =
1

|D|
∑
x∈D

Eθ(x)− log
∑
x̃

(−Eθ(x̃)) (6)

where the second term is a contrastive term. In particular, to minimize this objective function, we should not
only reduce the energy of the patterns in D but also increase the energy of the patterns not in D. However,
the summation over exponential configurations, and is usually intractable.

3.3 Four-Main Components

Given a training set S, building and training an energy-based model involves designing four components:

1. The architecture: the internal structure of E(W,Y,X)

2. The inference algorithm: the method for finding a value of Y that minimizes E(W,Y,X) for any given X

3. The loss function: L(W,S) measures the quality of an energy function using the training set.

4. The learning algorithm: the method for finding W that minimizes the loss functional over the family of
energy functions E , given the training set.
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