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Expectation Maximization (EM) has many applications, which can be categorized into two

• the data has missing values, due to problems with or limitations of the observation process.

• optimizing the likelihood function is analytically intractable but when the likelihood function
can be simplified by assuming the existence of the values for additional but missing (or hidden)
parameters.

1 Maximum Likelihood and Hidden Variable
The probability density function has the form

p(x|θ)

where θ is a set of parameters, i.e. which could be mean and variance in Gaussian distribution.
Given a dataset X = {x1, ..., xn},

p(X|θ) =

n∏
i=1

p(xi|θ) = L(θ|X)

is called the likelihood of the parameters given the data. Data X is observed and fixed, we would
like to maximize likelihood L(θ|X) to find the optimal parameters θ such that fit the data, which
is called MLE

θ∗ = arg max
θ
L(θ|X)

However, if the data X is not completed, where there are some data are not observed and hidden,
we can express this missing data with hidden variable Y . Then, we have the log-MLE as below

θ∗ = arg max
θ

logL(θ|X,Y )

= arg max
θ

log p(X,Y |θ)

= arg max
θ

∫
log p(X|y)p(y|θ)dy

It is very hard to maximize the log-likelihood, and sometimes we are not able to find the
analytical expression by taking the derivative of the log-likelihood w.r.t θ and setting to zero, since
there is summation or integral inside the logarithm. However, EM will be introduced to solve this
by approximating the likelihood of observed data X, which has a very good approximation-bound
guarantee.

2 EM Algorithm
Given data X and assume it is generated under some distribution, but is incomplete dataset. We
introduce Z = (X,Y ) to represent the completed dataset and assume a joint density function

p(Z|θ) = p(X,Y |θ)
= p(Y |X, θ)p(X|θ)
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Then, we can write the likelihood of the complete dataset as

logL(θ|Z) = logL(θ|X,Y ) = log p(X,Y |θ)

since here Y is unknown, we can treat this likelihood function as a function of random variable Y ,
and θ and X are constant, we can view this log likelihood as a function of Y with given X and θ.
We denote by

hX,θ(Y ) = log p(X,Y |θ) = logL(θ|Z)

Note here, Y is unknown and random, but presumably governed by an underlying distribution.
The EM will approximate the optimal solution by two steps iteratively:

E-step:
Q(θ, θ(i−1)) = EY

[
log p(X,Y |θ(i))|X, θ(i−1)

]
= E

[
hX,θ(i)(Y )|X, θ(i−1)

]
E-step is to calculate the conditional expectation of the completed data log-likelihood w.r.t.

the unknown data Y given the observed data X and the current parameter estimation of θ. Thus,
we need to initialize a reasonable θ. Since we view Y as a random variable, and according to the
conditional expectation formula, for example

E
[
h(Y )|X = x

]
=

∫
y

h(y)fy|x(y|x)dy

we can express the

EY
[

log p(X,Y |θ)|X, θ(i−1)
]

=

∫
y

log p(X,Y |θ) · py|X(y|X, θ(i−1))dy

M-step:
θ(i) = arg max

θ
Q(θ, θ(i−1))

M-step is to find the optimal θ such that maximize the expectation we derived in E-step, under
the assumption that Y is known from E-step.

3 Derivation of the EM Algorithm
EM is an iterative procedures for approximately maximizing the likelihood L(X|θ) of the incomplete
data X. Assume at iteration i−1, and the estimate of θ is θ(i−1), we want to compute an updated
estimated θ such that L(θ|X) > L(θ(i−1)|X) to achieve maximum likelihood iteratively. Therefore,
we need to consider the gap (difference,metric) that

L(θ|X)− L(θ(i−1)|X)

We are going to find the lower bound of the L(θ|X). We represent function L as log-likelihood, X
as observed data, and Y as hidden variable for missing data.

L(θ|X)− L(θ(i−1)|X) (1)

= log p(X|θ)− log p(X|θ(i−1)) (2)

= log

∫
y

p(X|y, θ)p(y|θ)dy − log p(X|θ(i−1)) (3)

= log

∫
y

p(y|X, θ(i−1))

p(y|X, θ(i−1))
p(X|y, θ)p(y|θ)dy − log p(X|θ(i−1)) (4)

= log

∫
y

p(y|X, θ(i−1))
p(X|y, θ)p(y|θ)
p(y|X, θ(i−1))

dy − log p(X|θ(i−1)) (5)

≥
∫
y

p(y|X, θ(i−1)) log
p(X|y, θ)p(y|θ)
p(y|X, θ(i−1))

dy − log p(X|θ(i−1)) (6)

=

∫
y

p(y|X, θ(i−1)) log
p(X|y, θ)p(y|θ)

p(y|X, θ(i−1))p(X|θ(i−1))
dy (7)
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• Step 6, since ∫
y

p(y|X, θ(i−1))dy = 1

and logarithm is concave function, we can use the Jensen inequality

f(
∑
i

λixi) ≥
∑
i

λif(xi) if f is concave and
∑
i

λi = 1.

f(
∑
i

λixi) ≤
∑
i

λif(xi) if f is convex and
∑
i

λi = 1.

• Step 7, since the log p(X|θ(i−1)) does not involve the variable y, we can put it into the integral
of y.

Therefore, we have the lower bound of

L(θ|X) ≥ L(θ(i−1)|X) +

∫
y

p(y|X, θ(i−1)) log
p(X|y, θ)p(y|θ)

p(y|X, θ(i−1))p(X|θ(i−1))
dy

, and we denote this lower bound as B(θ|θ(i−1)). Now, we can see that, if we find a good θ such
that increase or maximize the B(θ|θ(i−1)), then we can achieve our goal to maximize the likelihood
function of observed data L(θ|X). Thus, next step is to find the optimal θ that maximize the lower
bound of L(θ|X)

θ(i) = arg max
θ
B(θ|θ(i−1)) (8)

= arg max
θ
L(θ(i−1)|X) +

∫
y

p(y|X, θ(i−1)) log
p(X|y, θ)p(y|θ)

p(y|X, θ(i−1))p(X|θ(i−1))
dy (9)

= arg max
θ

∫
y

p(y|X, θ(i−1)) log
p(X|y, θ)p(y|θ)

p(y|X, θ(i−1))p(X|θ(i−1))
dy (10)

= arg max
θ

∫
y

p(y|X, θ(i−1))
[

log p(X|y, θ)p(y|θ)− log p(y|X, θ(i−1))p(X|θ(i−1))
]
dy (11)

= arg max
θ

∫
y

p(y|X, θ(i−1)) log p(X|y, θ)p(y|θ)dy (12)

= arg max
θ

∫
y

[
log p(X, y|θ)

]
p(y|X, θ(i−1))dy (13)

= arg max
θ

EY |X,θ(i−1)

[
log(X,Y |θ(i−1))

]
(14)

= arg max
θ
Q(θ, θ(i−1)) (15)

• From step 9 12, we omit the parts which do not involve the parameter θ.

• Step 15, we find that the lower bound B(θ, θ(i−1)) is actually Q(θ, θ(i−1)) we defined in EM
algorithm before.

In the end, we find the the lower bound of L(θ|X) is actually the expected value of the
completed-data log-likelihood with respect to the unknown data Y given the observed data X
and the current parameter estimation θ(i−1). Therefore, we realize that EM algorithm is to max-
imize the lower bound iteratively with an initial parameter θ(0), and it is not guaranteed to find
the global optimum.

4 Convergence of EM
Theorem 4.1. Assume p(X|θ) is the likelihood of observed data X, and θ(i−1),where i = 0, ..., k,
is the parameter estimate at ith iteration, and corresponding likelihood is p(X|θ(i)), then

p(X|θ(i)) ≥ p(X|θ(i−1))
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Proof. First, we know that

p(X|θ) =
p(X,Y |θ)
p(Y |X, θ)

, thus we have

log p(X|θ) = log
p(X,Y |θ)
p(Y |X, θ)

= log p(X,Y |θ)− log p(Y |X, θ)

Recall that

Q(θ, θ(i−1)) = EY
[

log p(X,Y |θ(i))|X, θ(i−1)
]

=

∫
y

[
log p(X, y|θ)

]
p(y|X, θ(i−1))dy

and we define
W (θ, θ(i−1)) =

∫
y

log p(y|X, θ)p(y|X, θ(i−1))dy

then we have

Q(θ, θ(i−1) −W (θ, θ(i−1))

=

∫
y

log p(X, y|θ)p(y|X, θ(i−1))dy −
∫
y

log p(y|X, θ)p(y|X, θ(i−1))dy

=

∫
y

log
p(X,Y |θ)
p(Y |X, θ)

dy

=

∫
y

log p(X|θ)dy

= log p(X|θ)

Therefore, it follows that

log p(X|θ(i))− log p(X|θ(i−1))

=
(
Q(θ(i), θ(i−1) −W (θ(i), θ(i−1))

)
−
(
Q(θ(i−1), θ(i−1) −W (θ(i−1), θ(i−1))

)
=
(
Q(θ(i), θ(i−1) −Q(θ(i−1), θ(i−1)

)
︸ ︷︷ ︸

1

−
(
W (θ(i), θ(i−1))−W (θ(i−1), θ(i−1))

)
︸ ︷︷ ︸

2

≥ 0

1. Since in M-step of the EM algorithm, θ(i) is chosen as to maximize Q(θ, θ(i−1)). Thus,

Q(θ(i), θ(i−1)) ≥ Q(θ(i−1), θ(i−1))

2.

W (θ(i), θ(i−1))−W (θ(i−1), θ(i−1))

=

∫
y

log p(y|X, θ(i))p(y|X, θ(i−1))dy −
∫
y

log p(y|X, θ(i−1))p(y|X, θ(i−1))dy

=

∫
y

log
p(y|X, θ(i))

p(y|X, θ(i−1))
dy

=

∫
y

log p(y|X, θ(i))− log p(y|X, θ(i−1))dy

≤ log

∫
y

p(y|X, θ(i))− p(y|X, θ(i−1))dy

= log 1

= 0

Since logarithm is monotone increasing, we have p(X|θ(i)) ≥ p(X|θ(i−1)).

From this proof, we can see that to prove the convergence of iterative EM algorithm, we need
to show that in ith iteration likelihood of observed data is larger than (i−1)th iterations’ estimated
likelihood, since we our objective is to maximize the likelihood p(X|θ).
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5 Example 1: Coin Tossing
This example is about hidden variable rather than missing values. Assume 3 coins A,B,C, and
probabilities of tossing head are π, p, q respectively. Now there is an experiment, we toss coin A
first. If A is head, then toss B; if A is tail, then toss C. We have 10 trails, and observed following
results:

1, 1, 0, 1, 0, 0, 1, 0, 1, 1

Since we don’t know if these results of B or C, we need to estimate the parameters π, p, q.

Proof. Let X denotes the observed data, and Y denotes the hidden missing variable, which is the
tossing result of A. If there is only one observed data, then we write the likelihood as:

P (x|θ) =
∑

Y={H,T}

P (x, Y |θ) (16)

=
∑

Y={H,T}

P (x|Y, θ)P (Y |θ) (17)

= P (x, Y = H|θ) + P (x, Y = T |θ) (18)
= πpx(1− p)x + (1− π)qx(1− q)x (19)

• Step 1, θ is {π, p, q}, Y is the hidden variable, which has the tossing result Head or Tail
from A.

If A is head, the observation is from B, otherwise C. Now, we have observed data X =
{x1, x2, ..., xn}, then we have the likelihood as

P (X|θ) =

n∏
i=1

[πpxi(1− p)xi + (1− π)qxi(1− q)xi ]

and our goal is to find the optimal θ̂

θ̂ = argmax
θ
L(θ|X)

= argmax
θ

logP (X|θ)

= argmax
θ

log

n∏
i=1

[
πpxi(1− p)xi + (1− π)qxi(1− q)xi

]
= argmax

θ

n∑
i=1

log
[
πpxi(1− p)xi + (1− π)qxi(1− q)xi

]
We cannot find the analytic form, because of the plus in the log function. Therefore, we have to
use the EM algorithm.

Assume at (i− 1) iteration, we have estimated θ(i−1) = {π(i−1)p(i−1)q(i−1)}.
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E-step: write down the Q function

Q(θ, θ(i−1)) = EY |X
[

logP (X,Y |θ)|X, θ(i−1)
]

(20)

=

n∑
j=1

∑
Y={H,T}

P (Y |xj , θ(i−1)) logP (xj , Y |θ(i−1)) (21)

=

n∑
j=1

∑
Y={H,T}

P (Y |xj , θ(i−1)) logP (xj , Y |π(i−1)p(i−1),q(i−1)

) (22)

=

n∑
j=1

∑
Y={H,T}

P (Y, xj |θ(i−1))

P (xj |θ(i−1))
logP (xj , Y |θ(i−1)) (23)

=

n∑
j=1

{
π(i−1)p

xj

(i−1)(1− p(i−1))
1−xj

π(i−1)p
xj

(i−1)(1− p(i−1))1−xj + (1− π(i−1))q
xj

(i−1)(1− q(i−1))1−xj
log[πpxj (1− p)xj ]

(24)

+
(1− π(i−1))q

xj

(i−1)(1− q(i−1))
1−xj

π(i−1)p
xj

(i−1)(1− p(i−1))1−xj + (1− π(i−1))q
xj

(i−1)(1− q(i−1))1−xj
log[(1− π)qxj (1− q)xj ]

}
(25)

M-step: compute new parameter by taking derivative of the Q function. Here we denote

uj =
π(i−1)p

xj

(i−1)(1− p(i−1))
1−xj

π(i−1)p
xj

(i−1)(1− p(i−1))1−xj + (1− π(i−1))q
xj

(i−1)(1− q(i−1))1−xj

and

1− uj =
(1− π(i−1))q

xj

(i−1)(1− q(i−1))
1−xj

π(i−1)p
xj

(i−1)(1− p(i−1))1−xj + (1− π(i−1))q
xj

(i−1)(1− q(i−1))1−xj

Then, we have

∂Q

∂π
=

N∑
j=1

(uj
π
− 1− uj

1− π
)

=

N∑
j=1

uj − π
π(1− π)

=

∑N
j=1 uj −N · π
π(1− π)

= 0

We can do the same thing to parameter p and q, and we get

π(i) =
1

N

N∑
j=1

uj (26)

p(i) =

∑N
j=1 ujxj∑N
j=1 uj

(27)

q(i) =

∑N
j=1(1− uj)xj∑N
j=1(1− uj)

(28)

6 Example 2: Gaussian Mixture Model
GMM is a mixture-density parameter estimation problem. Gaussian mixture density distribution
can be written as a linear superposition of Gaussian in the form

p(X|θ) =

K∑
k=1

αkφ(X|θk) (29)

where
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• αk is coefficient, and αk ≥ 0 and
∑K
k αk = 1

• φ(X|θk) is Gaussian density function, where θk = (µk, σ
2
k) and

φ(X|θk) =
1√

2πσk
exp

(
− (x− µk)2

2σ2
k

)
is the Gaussian distribution for kth model.

• Note, here we assume that we have K component densities mixed together with K mixing
coefficients αi . We can use any p.d.f. to replace Gaussian with other distribution in the
model.

Now, given a observed dataset X, and each sample in X is independent identical distributed.
We can write the log likelihood of the observed data as

log(L(Θ|X)) = log

N∏
i=1

p(Xi|Θ)

= log

N∏
i=1

( K∑
k=1

αkφ(xi|Θk)
)

=

N∑
i=1

log
( K∑
k=1

αkφ(xi|Θk)
)

If we want to maximize the log-likelihood to get the optimal parameters Θk, several problems we
need to solve

• The log-likelihood contains log of the sum, there is no analytical form of the derivative of
the log-sum function.

• Except the observed data X, any other hidden information ? Can we make any assumption
on the observed data ?

• Can we replace the probability with others, which can make the log-sum easier to solve. For
example, the log-sum-exp function is convex.

We may assume the observed data xi is generated as follows:

according to probability αk,we choose Kth Gaussian model φ(X|Θk) and generate data xi

This is common assumption of the generative model. Now, we know that we have the observed
X = {x1, ..., xn} , but corresponding Kth-model is unobserved (hidden). Therefore, we have the
random variable

yik =

{
1 if ith data is generated by kth model.
0 otherwise

Thus, for each data item, we have the complete data is (xi, yi1, ..., yik), and we can write the
complete-data likelihood as

L(Θ|X,Y ) = p(X,Y |Θ)

=

N∏
i=1

p(xi, yi|Θ)

=

N∏
i=1

K∏
k=1

αyikk φ(xi|Θk)yik

and hence,

logL(Θ|X,Y ) =

N∑
i=1

K∑
k=1

yik
[

logαk + log φ(xi|Θk)
]
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If we have the latent values of {yi}, we can maximize the logL(Θ|X,Y ) by taking derivative
w.r.t. {αk, µk, σ2

k} separately. However, we don’t have the these latent values, we have to consider
the expectation, w.r.t. the posterior distribution of the latent variables, of the complete-data
log-likelihood.

Since
yik ∈ {0, 1},

∑
k

yik = 1

and for each xi,
p(yik = 1) = αk

0 ≤ αk ≤ 1,

K∑
k=1

αk = 1,

we can write in the form

p(yi = k) =

K∏
k=1

αyikk = αk

which also denotes the probability that data xi is generated by kthcomponent. Then we can have
the conditional distribution of xi given a particular value for yi is a Gaussian,

p(xi|yik = 1) = φ(xi|Θk)

which also can be written in the form

p(xi|yi) =

K∏
k=1

φ(xi|Θk)yik = φ(xi|Θk)

Thus, we have

p(xi|yi) =
∑
yi

p(yi)p(xi|yi) =

K∑
k=1

αkφ(xi|Θk)

We find this marginal distribution is same as the Gaussian mixture density function on only
observed data at the beginning of the section, whereas this involves an explicit latent variable.
Now, we have

p(yik = 1|xi,Θk) =
p(yik = 1)p(xi|yik = 1,Θk)∑K
j=1 p(yij = 1)p(xi|yij = 1,Θj)

=
αkφ(xi|Θk)∑K
j=1 αjφ(xi|Θj)

= E(yik|xi,Θk)

= 1 ∗ p(yik = 1|xi) + 0 ∗ p(yik = 0|xi)

which can viewed as the responsibility that component k takes for explaining the observation
of xi.

Now we can write the expectation of complete data log-likelihood

Q(Θ,Θ(n−1)) = EY |X,Θ(n−1)

[
log p(X,Y |Θ)

]
= log p(X,Y |Θ) · p(Y |X,Θ(n−1))

= log

N∏
i=1

K∏
k=1

αyikk φ(xi|Θk)yik
N∏
i=1

K∏
k=1

p(yik|xi,Θ(n−1)
k )

}
= log

N∏
i=1

K∏
k=1

αyikk φ(xi|Θk)yikp(yik|xi,Θ(n−1)
k )

}
=

N∑
i=1

K∑
k=1

yik
[

logαk + log φ(xi|Θk)
]
p(yik|xi,Θ(n−1)

k )

=

N∑
i=1

K∑
k=1

yik · p(yik|xi,Θ(n−1)
k )

[
logαk + log φ(xi|Θk)

]
=

N∑
i=1

K∑
k=1

E
[
yik|xi,Θ(n−1)

k

]
·
[

logαk + log φ(xi|Θk)
]
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which is the E-step. And the M-step is just

Θ(n) = arg max
Θ

Q(Θ,Θ(n−1))

We repeat the E-step and M-step till convergence of either the log-likelihood or the parameter
values.
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