
Generative Adversarial Networks

Chunpai Wang

September 24, 2018

1 Goal of GAN
The goal of GAN is to train a generator G such that the discriminator D cannot discriminate the real samples
and the samples generated by G. The ultimate goal is to approximate the real distribution.

2 Algorithm and Architecture

Algorithm 1: Generative Adversarial Networks.
1 Initialize generator G and discriminator D ;
2 for number of training iterations do
3 (Train Discriminator D, used to evaluate the JS-Divergence)
4 for k steps do
5 Fix generator and sample minibatch of m noise sample {z(1), ..., z(m)} from noise prior PG(z).
6 Sample minibatch of m examples {x(1), ..., x(m)} from real distribution Pdata(x).
7 Discriminator learns to assign high scores to real objects and low scores to generated objects, by

updating the parameters in D with stochastic gradient ascent.

θD = θD +∇θD
1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
(1)

8 end
9 (Train Generator G, same as minimize the JS-Divergence)

10 # Fix discriminator D, and update generator G. Generator learns to "fool" the discriminator,
11 # such that discriminator will give high score to the objects generated by G;
12 Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pG(z).
13 Update the generator by descending its stochastic gradient:

θG = θG −∇θG
1

m

m∑
i=1

[
log(1−D(G(z(i))))

]
(2)

14 end

Figure 1: Caption

In summary, the discriminator D and generator G play the following two player minimax game with value

1



function V (G,D):

min
G

max
D

V (D,G) = min
G

max
D

Ex∼Pdata(x) [logD(x)] + Ez∼pz(z) [log(1−D(G(z)))] (3)

Figure 2: Training of GAN. Black dot line represents the real data distribution Pdata(x) and green line represents
the generated distribution pG(z), where p(z) denotes the prior of x and the up-ward arrow means the mapping
x = G(z). Blue dash line represents the discriminator D. Note that, the z is uniformly distributed, but after
mapping G(z) is not uniformly distributed.
If we don’t use uniformly distributed z, what will happen ? It does not matter, since the neural network
can still find the mapping x = G(z).

Now, let’s see how can we play this minimax game. Once G is fixed, we want to maximize the value function
such that discriminator D will give high value to real data and low value to generated data. Thus, the optimal
D∗ is

D∗ = argmax
D

V (D,G = g) (4)

Now when discriminator is fixed, and we want to make the generator generate a data such that the discriminator
will give high value on it, and the optimal G is

G∗ = argmin
G

V (G,D = d) = argmin
G

Ez∼pz(z) [log(1−D(G(z)))] (5)

The remaining questions are

• how can we obtain those optimal D and G in each iteration ?

• how can we prove it will converge to Pdata = PG ?

3 Basic Theory

3.1 MLE and KL-Divergence
One interesting thing is MLE can be interpreted as minimizing the KL-divergence from the true distribution
to the estimated distribution. Our ultimate goal is to find the distribution Pdata(x), which we cannot directly
to get it, but we can sample from it. We would like to use a parameterized distribution PG(x; θ) such that it
is close to Pdata(x). That is, we sample m data from the real distribution Pdata(x), we would like to find the
parameter θ such that the likelihood is maximized

θ∗ = argmax
θ
P (x1, ..., xm; θ) = argmax

θ

m∏
i=1

PG(x
(i); θ) (6)

Note that, the data are sampled from the real distribution Pdata(x), thus we have

argmax
θ

m∏
i=1

PG(x
(i); θ) = argmax

θ
log

m∏
i=1

PG(x
(i); θ) (7)

= argmax
θ

m∑
i=1

logPG(x
(i); θ) (8)

= argmax
θ

1

m

m∑
i=1

logPG(x
(i); θ) (9)

2



By the law of large number, sample averages converge almost surely to expectation, we have

argmax
θ

1

m

m∑
i=1

logPG(x
(i); θ) ≈ Ex∼Pdata

[logPG(x; θ)] =
∑ 1

N
logPG(x

i; θ) (10)

since we assume we sample x from Pdata uniformly, and p(xi) = 1
N , where N denotes by the total number of

samples. Hence, we have

argmax
θ

1

m

m∑
i=1

logPG(x
(i); θ) ≈ argmax

θ
Ex∼Pdata

[logPG(x; θ)] (11)

= argmax
θ

∫
x

Pdata(x) logPG(x; θ) (12)

= argmax
θ

∫
x

Pdata(x) logPG(x; θ)dx− argmax
θ

∫
x

Pdata(x) logPdata(x)dx (13)

= argmax
θ

∫
x

Pdata(x) [logPG(x; θ)− logPdata(x)] dx (14)

= argmax
θ
−
∫
x

Pdata(x) [logPdata(x)− log pG(x; θ)] dx (15)

= argmin
θ

∫
x

Pdata(x) [logPdata(x)− log pG(x; θ)] dx (16)

= argmin
θ
KL (Pdata‖pG) (17)

Traditional approaches to generative modeling relied on maximizing likelihood, or equivalently minimizing
the KL divergence between our unknown data distribution Pdata and our generator’s distribution PG, which
parameterized by θ. But, some issues of KL-divergence are:

• If Pdata(x) > PG(x), then x is a point with higher probability of coming from the data than being a
generated sample. When Pdata(x) > 0 but PG(x)→ 0, the integral inside the KL-divergence grows quickly
to infinity, meaning that this cost function assigns an extremely high cost to a generator’s distribution not
covering parts of the data. Hence, the generator will generate images nearly same as the training data,
which is so-called "mode-dropping".

• If Pdata(x) < PG(x), then x is a point with lower probability of coming from the data than being a
generated sample. When Pdata(x) → 0 and pG(x) > 0, the value inside the KL-divergence goes to 0,
meaning that this cost function will pay extremely low cost for generating fake looking samples. Thus,
the generator will output an image that does not look real.

Thus, minimizing KL-divergence is not a desirable objective to approximate the real distribution and generate
fake samples. The question is if there is an existing metric that does not have the shortcoming of KL-divergence
? If not, can we create one ?

3.2 How to Define A General PG(x) ? Why Discriminator ?
The question rises from the minimizing the divergence between two distributions, where sometimes we restrict
the parameter θ. GAN exploits a more general distribution PG(x), which G is a neural network and the network
defines the probability distribution PG.

Figure 3: The purpose of generator in GAN

3



In GAN, the optimal G∗ = argminGDiv(Pdata, PG), where Div denotes a kind of divergence which measures
the difference of two distributions (not limited to KL-divergence). We will see later that a so-called JS-divergence
can do a better job than KL-divergence.
One problem here is how can we find the optimal G∗ in the situation that we don’t know the both distribu-
tion PG and Pdata? If we don’t know the distributions, how can we minimize the divergence of two distribu-
tions.

Although we do not know the distributions of PG and Pdata, but we can sample from them. Then, we can
use a discriminator D to evaluate the divergence between these two distributions, where it will give high value
to samples from Pdata and low value to samples from PG, and the objective of D is to maximize the value
function (when G is fixed) as follows

V (G,D) = Ex∼Pdata
[logD(x)] + Ex∼PG

[log(1−D(x))] (18)

and
D∗ = argmax

D
V (D,G) (19)

The interesting part is, the objective function (that maximizing the value function argmaxD V (D,G)) is exactly
same as training a binary classifier. For example, when the samples A from Pdata and samples B from PG are
close and merge to each other, then the binary classifier is hard to classify these A and B classes, thus the loss
of training will be always high. It also means the objective value V (G,D) is always low. We can also interpret
that the divergence of these two classes is small. In other words, if a discriminator can easily classify two classes,
then it means the divergence of two classes is large. Therefore, we can use the discriminator to evaluate the
divergence of two distributions, and G∗ = argminGDiv(Pdata, PG). We do not need a metric with analytic
form to measure two distributions any longer, where two distributions are unknown !!!

3.3 Jensen-Shannon Divergence
We will see that the maximum objective value maxV (G,D) with G fixed, is related to JS-Divergence:

JSD(P‖Q) =
1

2
KL(P‖M) +

1

2
KL(Q‖M) (20)

where M = 1
2 (P +Q).

V (G,D) = Ex∼Pdata
[logD(x)] + Ex∼PG

[log(1−D(x))] (21)

=

∫
x

Pdata(x) logD(x)dx+

∫
x

PG(x)[log(1−D(x))]dx (22)

=

∫
x

{Pdata(x) logD(x) + PG(x)[log(1−D(x))]} dx (23)

Assume D(x) is extremely powerful and can be any function, to maximize the V (G,D), the optimal D∗ maxi-
mizes the value in terms of every possible x

Pdata(x) logD(x) + PG(x)[log(1−D(x))] (24)

Now, given a x, to find the optimal D∗, we can set the derivative of above formula w.r.t D, and set it to 0.
Based on the calculus, for f(D) = a · log(D) + b · log(1−D)

df(D)

dD
= a ∗ 1

D
+ b ∗ 1

1−D
∗ (−1) = 0 (25)

D∗ =
a

a+ b
=

Pdata(x)

Pdata(x) + PG(x)
= D∗

G(x) (26)

4



and the corresponding optimal value is

max
D

V (G,D) = V (G,D∗) (27)

= Ex∼Pdata
[logD∗(x)] + Ex∼PG

[log(1−D∗(x))] (28)

= Ex∼Pdata
[log

Pdata(x)

Pdata(x) + PG(x)
] + Ex∼PG

[log
PG(x)

Pdata(x) + PG(x)
] (29)

=

∫
x

Pdata(x)[log
Pdata(x)

Pdata(x) + PG(x)
]dx+

∫
x

PG(x)[log
PG(x)

Pdata(x) + PG(x)
]dx (30)

=

∫
x

Pdata(x)[log
1
2Pdata(x)

1
2 (Pdata(x) + PG(x))

]dx+

∫
x

PG(x)[log
1
2PG(x)

1
2 (Pdata(x) + PG(x))

]dx (31)

= 2 log
1

2
+

∫
x

Pdata(x)[log
Pdata(x)

1
2 (Pdata(x) + PG(x))

]dx+

∫
x

PG(x)[log
PG(x)

1
2 (Pdata(x) + PG(x))

]dx

(32)

= 2 log
1

2
+KL(Pdata‖

Pdata + PG
2

) +KL(PG‖
Pdata + PG

2
) (33)

= 2 log
1

2
+ 2 · JSD(Pdata‖PG) (34)

= −2 log(2) + 2 · JSD(Pdata‖PG) (35)

We will find that the main issue of GAN is existing in this equality. Theoretically, we would like to train
the discriminator to optimum, and evaluate the JS-Divergence, then use gradient descent to minimize it.
However, in practices we observe gradient vanishing. One fact is, the images is a low-dimensional manifold
in a high dimensional space. The overlap of generated samples and true samples can be neglected [5], and
the JS-Divergence is always 0 ?

3.4 Combine G∗ and D∗

Recall that
D∗ = argmax

D
V (G,D) (36)

and
G∗ = argmin

G
Div(PG, Pdata) (37)

Since the Div denotes by any divergence, and the optimal discriminator is related to JS-divergence, thus we
can replace the Div with JS-divergence

G∗ = argmin
G

max
D

V (G,D) (38)

The figure below shows an example to solve this minmax problem.

Figure 4: Assume there are only 3 generators in the generator space. For each generator, we can find the optimal
D∗ that maximize the value V , and then choose the generator with minimum value among those V (G,D∗). In
this example, G3 is the optimal generator.

We can see that the global minimum of the virtual training criterion C(G) is achieved if and only if PG =
Pdata. At that point, C(G) achieves the value −2 log 2. Since the JS-divergence is always non-negative, and
zero if and only if they PG = Pdata. We can see that the algorithm to solve minGmaxD V (D,G) is actually the
algorithm 1. In algorithm, the steps of training the discriminator is actually to evaluate the JS-divergence, and
the steps of training the generator is to find the optimal G that minimize the JS-divergence.

5



3.5 Convergence of Algorithm 1
What algorithm 1 does is to solve the problem

G∗ = argmin
G

max
D

V (G,D)

which can be interpreted as to minimize the JS-divergence between Pdata and PG.

Proposition 1. If G and D have enough capacity, and at each step of algorithm 1, the discriminator
is allowed to reach its optimum given G, and PG is updated so as to improve the criterion

Ex∼Pdata
[logD∗(x)] + Ex∼PG

[log(1−D∗(x))]

then PG converges to Pdata.

Key points: What is the meaning of "G and D have enough capacity" ? Should the discriminator
reach its optimum given G ?

Proof. Now assume the discriminator can reach its optimum given G, and we denote the optimal value
L(G) = maxD V (G,D). In addition, PG is updated as

θG = θG − η
∂L(G)

∂θG
(39)

Now we would like to compute the derivative of L(G) = maxD V (G,D) w.r.t θG. Note that V (G,D) is
convex in PG, because the expectation of convex function is convex, namely

Ez∼Pz(z)[log(1−D(G(z)))] (40)

is convex. The maxD V (G,D) is pointwise supremum, which is also convex with unique global optima.
However, the update rule does not necessarily decrease the JS-Divergence. Because when we update the
θG0

to θG1
, we need to exploit the discriminator to compute the new JS-Divergence between PG1

(x) and
Pdata(x). Thus, the algorithm is not decreasing the JS-Divergence between PG0

(x) and Pdata(x) any
more. Thus, in the algorithm only does one-step update on the θG , assuming it will not change the
JS-divergence too much (see figure), and the algorithm will converge.

Figure 5: Potential Issue in GAN.

4 Implementation Issues of GANs
• In practice, we must implement the game using an iterative numerical approach. Optimizing D to com-

pletion in the inner loop of training is computationally prohibitive, and on finite datasets would result
in overfitting. Instead, we alternative between k steps of optimizing D and one step of optimizing G.
This results in D being maintained near its optimal solution, so long as G changes slowly enough. We
cannot train the discriminator too well, otherwise the gradient vanishes. However, this theoretically is not
evaluating the JS-Divergence any longer. The main reason is, the overlap of generated samples and true
samples can be neglected, which leads to JS-divergence equals to log 2, for any x there are 4 possibilities

6



– Pdata(x) = 0 and PG = 0

– Pdata(x) 6= 0 and PG 6= 0

– Pdata(x) = 0 and PG 6= 0

– Pdata(x) 6= 0 and PG = 0

For the first case, we cannot compute the JS-Divergence; for second case, since the overlap is 0, its
contribution to JS-Divergence is also 0; for third and fourth case, the JS-Divergence is

JSD(Pdata‖PG) =
1

2
KL(Pdata‖

Pdata + PG
2

) +
1

2
KL(PG‖

Pdata + PG
2

) = log 2 (41)

• In practice, equation 3 may not provide sufficient gradient for G to learn well. Early in learning when G is
poor, D can reject samples with high confidence because they are clearly different from the training data.
In this case, log(1−D(G(z))) saturates, which means the gradient is very small. Rather than training G
to minimize E[log(1 −D(G(z)))] we can train G to minimize E[− logD(G(z))]. This objective function
results in the same fixed point of the dynamics of G and D but provides much stronger gradients early in
learning [6]. However, if we use the alternative − log(D) trick, we will still see mode collapse and unstable
gradient. The reason is if we replace the log(1 − D(G(z))) with log(−D(G(z))), the formula (27) will
becomes

KL(Pdata‖PG)− 2 · JS(Pdata‖PG) (42)

5 Structure Learning and GAN
Structure learning can be viewed as an extreme one-shot or zero-shot learning. If we consider each possible
output as a class, because the output space is huge, most classes do not have any training data, and machine
has to create new stuff during testing. Machine has to learn to do planning:

• Machine generates objects component-by-component, but it should have a big picture in its mind.

• Because the output components have dependency, they should be considered globally.

There are two main-stream approaches to solve the structure learning problem:

• Button-up. Learn to generate the object at the component level, which generate the value pixel-by-pixel,
and it will lose global dependency.

• Top-down. Evaluating the whole object, and find the best one.

Here, we may view the button-up as generator, and top-down as discriminator.

References
[1] Short Summation of GANs https://zhuanlan.zhihu.com/p/34916654

[2] A Tutorial on Generative Adversarial Networks https://www.jiqizhixin.com/articles/2017-10-1-1

[3] GAN-Why it is so hard to train Generative Adversarial Networks! https://medium.com/@jonathan_hui/
gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b

[4] https://zhuanlan.zhihu.com/p/39719663

[5] Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial net-
works." arXiv preprint arXiv:1701.04862 (2017).

[6] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems.
2014.

7

https://zhuanlan.zhihu.com/p/34916654
https://www.jiqizhixin.com/articles/2017-10-1-1
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-generative-advisory-networks-819a86b3750b
https://zhuanlan.zhihu.com/p/39719663

	Goal of GAN
	Algorithm and Architecture
	Basic Theory
	MLE and KL-Divergence
	How to Define A General PG(x) ? Why Discriminator ?
	Jensen-Shannon Divergence
	Combine G* and D*
	Convergence of Algorithm 1

	Implementation Issues of GANs
	Structure Learning and GAN

