
Markov Chain Monte Carlo
马尔可夫链蒙特卡洛

Chunpai Wang

March 2018

目录

1 Introduction 2

2 Monte Carlo Simulation 2

3 Generating Samples from Probability Distribution 3

3.1 Inversion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Markov Chain and Limiting Distribution 5

4.1 Example of Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Limiting Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 MCMC 8

5.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Detailed Balance Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 General MCMC Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Metropolis-Hastings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.5 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



1 Introduction

MCMC techniques are often applied to solve integration and optimisation problems in large
dimensional spaces. For example, in Bayesian inference and learning, given some unknown
variable x ∈ X and y ∈ Y,

1. to obtain the posterior p(x | y) given the prior p(x) and likelihood p(y | x), the normal-
ization term is intractable to compute

p(x|y) = p(y|x)p(x)∫
χ
p (y|x′) p (x′) dx′ (1)

2. give the joint posterior (x, z) ∈ X × Z, the marginal posterior is also intractable

p(x|y) =
∫
z

p(x, z|y)dz (2)

3. expectation is also intractable to compute

Ep(x|y)(f(x)) =

∫
χ

f(x)p(x|y)dx (3)

2 Monte Carlo Simulation

Now we will introduce how Monte Carlo method could help solve the intractable integration

θ =

∫ b

a

f(x)dx (4)

which could be viewed as the area under the curve f(x) in figure (1).

图 1

As we know the integration could be intractable, and we could resort to the Monte Carlo
method to approximate it. The simplest way is to randomly sample a value x0 ∈ [a, b] and
approximate the integration with

(b− a)f(x0) (5)

However, this method may lead to huge approximation error. We could sample multiple values
x0, · · · , xn−1 ∈ [a, b] and get a better approximation with

b− a

n

n−1∑
i=0

f(xi) (6)
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with the assumption that x is uniformly distribution on the interval [a, b]. What if the x is
not uniformly distributed on the interval [a, b], but follows a p.d.f p(x), what should we do
? If we could obtain the pdf of p(x) on interval [a, b], then we could still approximate the
integration by

θ =

∫ b

a

f(x)dx =

∫ b

a

f(x)

p(x)
p(x)dx ≈ 1

n

n−1∑
i=0

f (xi)

p (xi)
(7)

which is the general form of Monte Carlo method. As we can see, if we assume p(x) to be
uniform distribution, that is p(xi) = 1

b−a
, we could obtain the right hand side of formula

above
1

n

n−1∑
i=0

f (xi)

1/(b− a)
=

b− a

n

n−1∑
i=0

f (xi) (8)

which is same as formula (6).

Sampling on uniform distribution could be easily obtained by linear congruential generator
（线性同余发生器), and the question remains here is how to obtain the samples from other

probabilistic distribution p(x).

3 Generating Samples from Probability Distribution

3.1 Inversion Method

When p(x) has standard form, e.g. Gaussian, it is straightforward to sample from it using
easily available routines. However, when this is not the case, we need to introduce more
sophisticated techniques based on rejection sampling, importance sampling and MCMC. Here,
we will show one example on negative exponential distribution to generate random samples.

The p.d.f of negative exponential distribution of random variable X could be written as

p(x) = λe−λx for x ≥ 0 (9)

and the cumulative probability distribution (cdf) is

F (x) =

∫ x

0

λe−λxdx = 1− e−λx for x ≥ 0 (10)

Since the value of cdf is in [0, 1], we could set a random number r (uniformly distributed
between 0 and 1) equal to F (x), that is

r = F (x) = 1− e−λx (11)

or, equivalently,

x =
− ln(1− r)

λ
(12)

As we can see, the equation (12) could be used for generating the sample of random variable
X under the negative exponential distribution.

3.2 Rejection Sampling

Rejection sampling could be used for generating sample values for any random variable that:
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1. Assumes values only within a finite range.

2. Has a p.d.f. that is bounded (i.e., does not go to infinity for any value of the random
variable).

Let X be such a random variable. Let the maximum value of the p.d.f. fX(x) be denoted as
c, and let X assume values in the range [a, b]. To generate random observations of X through
the rejection method (see figure (2)):

1. Enclose the pdf fX(x) in the smallest rectangle that fully contains it and whose sides
are parallel to the x and y axes. This is a (b− a)× c rectangle.

2. Using two random numbers, R ∼ Uniform(0, 1) and U ∼ Uniform(0, 1), and scaling
each to the appropriate dimension of the rectangle [by multiplying one by (b−a) and the
other by c] generate a point that is uniformly distributed over the rectangle. Notice that,
random variable R follows a proposal distribution q(x), which is uniform distribution in
our case here.

3. If this point is "below" the pdf, accept the x-coordinate of the point as an appropriate
sample value of X. Otherwise, reject and return to Step 2.

The reason why this method works is quite simple. The points (x, y) obtained through the
procedure of Step 2 are uniformly distributed over the area of the rectangle, (b − a) × c.
Therefore, for any point whose x-coordinate is between x0 and x0+dx (see Figure 2), we have

P { point is accepted |x0 ≤ x ≤ x0 + dx} =
fX (x0) dx

c dx
=

fX (x0)

c
(13)

图 2: Rejection Sampling with Uniform Proposal Distribution

总结：c 是用来使得 fX(x) 总是在 c · q(x) 的下面，那么我们只需要先用 proposal distri-
bution 先生一个任意的 x(i), 然后在 [0, c · q(x)] 之间随机均匀生成一个数值. 如何这个数值
小于 fX(x)，那么我们就把这个 x(i) 当作是 fX(x) 的抽样。

It is not always possible to bound fX(x)/q(x) with a reasonable constant c over the whole
space X.If c is too large, the acceptance probability

P { point is accepted |x0 ≤ x ≤ x0 + dx} =
fX (x0) dx

c dx
=

fX (x0)

c
(14)

will be too small. This makes the method impractical in high-dimensional scenarios.
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3.3 Importance Sampling

Suppose that our problem becomes to find Ep[f(x)] where p is a p.d.f on D ⊆ Rd, that is
p(x) = 0 for all x /∈ D. Thus, we have

Ep[f(x)] =

∫
x∈D

p(x)f(x)dx (15)

The problem here is p(x) would be very difficult to sample, and we have to resort to a proposal
distribution q(x) which is more easier to sample. Therefore, we could directly sample on the
proposal distribution to compute the Ep[f(x)] according to

Ep [f(x)] =

∫
x∈D

q(x)
p(x)

q(x)
f(x)dx (16)

=

∫
x∈D

q(x)

[
p(x)

q(x)
f(x)

]
dx (17)

= Eq

[
p(x)

q(x)
f(x)

]
(18)

where p(x)
q(x)

is called the importance weight, and we should make sure q(x) > 0 if p(x) > 0.

4 Markov Chain and Limiting Distribution

The property of Markov chain is defined as

P (Xt+1 = x | Xt, Xt−1, · · · ) = P (Xt+1 = x | Xt) (19)

where Xt denotes the random variable of state at time t. That means, future state at time
t+ 1 is only effected by the current state at time t.

4.1 Example of Markov Chain

Sociologists typically categorize people into 3 classes based on their economic conditions: 1.
lower-class, 2. middle-class, and 3. upper-class. They have found that the most important
factor that determines a person’s income class is the income class of their parents, and build
the class transition probabilities as below:

P =


0.65 0.28 0.07

0.15 0.67 0.18

0.12 0.36 0.52

 (20)

where each row sums to 1, and P13 = 0.07 is the probability of being in upper class if their
parents are in lower class.
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图 3: Transition Probabilities

Assume that the probability distribution of classes in current generation is denoted by π0 =

[π0(1), π0(2), π0(3)], the probability distribution of classes of their children is denoted by
π1 = [π1(1), π1(2), π1(3)], which could be computed by the transition probability matrix:

π1 = π0P (21)

Therefore, we could also obtain their grandchildren’s distribution

π2 = π1P = π0P
2 (22)

and the distribution of their nth generations:

πn = πn−1P = πn−1P
2 = · · · = π0P

n (23)

Now, assuming the probability distribution for current generation is π0 = [0.21, 0.68, 0.11],
and we could compute the π1, · · · , πn as below:

nth Generation 0 lower-class 1 middle-class 2 upper-class
0 0.210 0.680 0.110
1 0.252 0.554 0.194
2 0.270 0.512 0.218
3 0.278 0.497 0.225
4 0.282 0.490 0.226
5 0.285 0.489 0.225
6 0.286 0.489 0.225
7 0.286 0.489 0.225
8 0.289 0.488 0.225
9 0.286 0.489 0.225
10 0.286 0.489 0.225
. . . . . . . . . . . .

We find that the probability distribution stay unchanged starting from 7th generation, and we
call this as stationary distribution. Is this a coincident ? Let’s try another initial distribution
π0 = [0.75, 0.15, 0.1], and compute the distribution again:
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nth Generation 0 lower-class 1 middle-class 2 upper-class
0 0.75 0.15 0.1
1 0.522 0.347 0.132
2 0.407 0.426 0.167
3 0.349 0.459 0.192
4 0.318 0.475 0.207
5 0.303 0.482 0.215
6 0.295 0.485 0.220
7 0.291 0.487 0.222
8 0.289 0.488 0.225
9 0.286 0.489 0.225
10 0.286 0.489 0.225
. . . . . . . . . . . .

We could see that the distribution become stable again starting from 9th generation. The
most stunning thing is, both converge to the same distribution π = [0.286, 0.489, 0.225] with
different initial distributions. We call this distribution as limiting distribution of Markov
chain.

4.2 Limiting Distribution

A limiting distribution π, is a distribution over the states such that whatever the starting
distribution π0 is, the Markov chain converges to π. Therefore, we can conclude that the
limiting distribution is determined by the transition matrix rather than the initial distribution,
with the evidence:

P 100 =


0.286 0.489 0.225

0.286 0.489 0.225

0.286 0.489 0.225

 (24)

Theorem 1 (Ergodic Theorem of Markov Chain). We say that

• a Markov chain has period k > 1 if it can only return to its present state Xt at times
t+ k, t+ 2k, ..... We say a Markov chain is aperiodic if does not have period k for any
k > 1. That is Pii > 0.

• the Markov chain is irreducible if we can get from any state to any other states (possibly
in several steps). That means there exists a n such that Pn

ij > 0 ∀ i, j.

• the Markov chain is positive recurrent if we are sure to come back to any state with finite
expected time

A Markov chain which aperiodic, irreducible and positive recurrent has a limiting distribution
π, and

1. limn→∞ Pn =



π(1) π(2) · · · π(j) · · ·
π(1) π(2) · · · π(j) · · ·
· · · · · · · · · · · · · · ·
π(1) π(2) · · · π(j) · · ·
· · · · · · · · · · · · · · ·
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2. πj =
∑∞

i=1 π(i)Pij

3. π is the only non-negative solution of πP = π

5 MCMC

5.1 Intuition

Recall that Xt denotes the random variable of state at time t, and follows the distribution πt.
By the ergodic theorem, we have

X0 ∼ π0(x)

X1 ∼ π1(x)

X2 ∼ π2(x)

...

Xn ∼ πn(x) = π(x)

Xn+1 ∼ π(x)

Xn+2 ∼ π(x)

...

where Xn, Xn+1, · · · are random variables following the same distribution π(x), but not inde-
pendent. Now, assuming starting from a specific initial state x0, with certain transition matrix
P , we could obtain the next following states x1, · · · , xn, xn+1, · · · . Moreover, the xn, xn+1, · · ·
can be viewed as the samples of stationary distribution π(x).

Now, you may see a way to generate samples from any distribution p(x). That is, if we could
create a Markov train with a transition matrix P that leads to limiting distribution which
is p(x), then no matter what initial distribution we start with, we will eventually generate a
sequence of states x0, · · · , xn, xn+1, xn+2, · · · . If the Markov chain converge to the stationary
distribution π(x) = p(x) at time n, then we obtain the samples of p(x): xn, xn+1, · · ·

5.2 Detailed Balance Condition

The question is how to create a transition matrix that will lead to the desired limiting distri-
bution. We will leverage the detailed balance condition.

Theorem 2 (Detailed Balance Condition). Given the transition matrix Q for a Markov chain
and a distribution p(x), if the Markov chain is aperiodic, irreducible and positive recurrent
and satisfies

p(i)Q(i, j) = p(j)Q(j, i) ∀ i, j (25)

then p(x) is the stationary distribution of this Markov chain.

证明.
∞∑
i=1

p(i)Q(i, j) =
∞∑
i=1

p(j)Q(j, i) = p(j)
∞∑
i=1

Q(j, i) = p(j) (26)
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Therefore, we have pQ = p. Since p is the solution of pQ = p, we conclude that p is the
stationary distribution of Markov chain with transition matrix Q.

Now it is straightforward that for generating samples from any distribution p(x), we could
achieve it by creating a transition matrix Q of Markov chain that satisfies the detailed balance
condition. Denote β(i, j) or β(i → j) or β(j | i) by the transition probability from state i to
state j in a random transition matrix β. Of course, the random transition matrix β will not
satisfies the detailed balance condition in general, that is

p(i)β(i, j) ̸= p(j)β(j, i) (27)

However, we may observe that it is possible to modify the Markov chain by introducing
additional probability α(i, j) to make the following condition holds:

p(i)β(i, j)α(i, j) = p(j)β(j, i)α(j, i) (28)

where the most simple choice of α(i, j) and α(j, i) are:

α(i, j) = p(j)β(j, i) (29)

α(j, i) = p(i)β(i, j) (30)

Therefore, the transition matrix Q that makes our target distribution p(x) as the limiting
distribution satisfies:

Q(i, j) = β(i, j)α(i, j) (31)

5.3 General MCMC Sampling

The probability α(i, j) that transforms the random Markov chain β could be interpreted as
the acceptance rate as in the rejection-sampling method. That means, when state i transits to
state j with original probability β(i, j), we add an additional probability α(i, j) to accept the
transition. Therefore, we could summarize the general MCMC sampling method as below:

Algorithm 1: MCMC Sampling
Input: a random proper transition matrix β, the target distribution p(x), number

of samples M

Output: M samples from distribution p(x)

1 generate an initial state X0 = x0

2 for t = 0 to N +M − 1 do
3 sample y ∼ β(xt, x)

4 sample µ ∼ Uniform(0, 1)

5 if µ < α(xt, y) = p(y)β(y, xt) then
6 accept the transition xt → y, and Xt+1 = y

7 else
8 reject the transition, and Xt+1 = xt

9 end
10 end
11 return the sequence of states at time t ≥ N .
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5.4 Metropolis-Hastings

One potential issue of MCMC sampling is the acceptance probability α(i, j) could be very
small, which leads to extremely slow convergence to stationary distribution, that mean N will
be very large. How can we resolve this issue ?

Assume α(i, j) = 0.1 and α(j, i) = 0.2, and the detailed balance condition is satisfied:

p(i)Q(i, j)× 0.1 = p(j)Q(j, i)× 0.2, (32)

if we times both sides with 5, the detailed balance condition still holds:

p(i)Q(i, j)× 0.5 = p(j)Q(j, i)× 1, (33)

but the acceptance probabilities have been increased from 0.1 to 0.5 and 0.2 to 1, respectively.
Therefore, we could simply magnify both α(i, j) and α(j, i) by a constant c such that

c · max(α(i, j), α(j, i)) = 1 (34)

Algorithm 2: Metropolis-Hastings
Input: a random proper transition matrix β, the target distribution p(x), number

of samples M

Output: M samples from distribution p(x)

1 generate an initial state X0 = x0

2 for t = 0 to N +M − 1 do
3 sample y ∼ β(xt, x)

4 sample µ ∼ Uniform(0, 1)

5 if µ < α(xt, y) = min
{

p(y)β(y,xt)
p(xt)β(xt,y)

, 1
}

then

6 accept the transition xt → y, and Xt+1 = y

7 else
8 reject the transition, and Xt+1 = xt

9 end
10 end
11 return the sequence of states at time t ≥ N .

5.5 Gibbs Sampling

There are some challenges when applying Metropolis-Hastings to high dimensional space:
1) it is time-consuming to compute the acceptance rate in high dimensional space, 2) some
acceptance rates are always less than 1, which may requires many iterations to converge to
stationary distribution, and 3) sometimes, the joint probability of high dimensional features
is difficult to compute than the conditional distribution.

Now, we are looking for a way to solve those 3 issues. For example, in 2-dimensional case, we
have probability distribution p(x, y). That means we use 2 random variables to represent one
state. Now consider two states or two points A = (x1, y1) and B = (x1, y2) in the line x = x1,
we have

p (x1, y1) p (y2|x1) = p (x1) p (y1|x1) p (y2|x1) (35)

p (x1, y2) p (y1|x1) = p (x1) p (y2|x1) p (y1|x1) (36)
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and
p (x1, y1) p (y2|x1) = p (x1, y2) p (y1|x1) (37)

That is
p(A)p (yB|x1) = p(B)p (yA|x1) (38)

Recall the detail balance condition, we would like to find a transition matrix Q such that

p(A)Q(A → B) = p(B)Q(B → A) (39)

We can easily find this transition probability, that is

Q(A → B) = p(yB | x1) if xA = xB = x1 (40)

Q(B → A) = p(yA | x1) if xA = xB = x1 (41)

Similarly, consider two states A = (x1, y1) and C = (x2, y1) in the line y = y1, we could set
the transition probability as

Q(A → C) = p(xC | y1) if yA = yC = y1 (42)

Q(C → A) = p(xA | y1) if yA = yC = y1 (43)

If two states A = (x1, y1) and D = (x2, y2) are not in the line which is parallel to x− axis or
y − axis, then we could simply set

Q(A → D) = Q(D → A) = 0 if yA ̸= yD and xA ̸= xD (44)

Hence, according to the detailed balance condition, the transition matrix Q we have con-
structed could lead to stationary distribution p(x, y).

The idea could be easily extend to the higher dimensional cases. For higher dimensional case,
we could simply change x1 to x1, and we will find that detailed balance condition still holds:

p (x1, y1) p (y2|x1) = p (x1, y2) p (y1|x1) (45)

and we could construct the transition matrix Q in the similar way. That is, if a state A =

(x1, · · ·xi, · · · , xn) transits along the axis xi to another state B, then the transition probability
could be defined as p(xi | x1, · · · , xi−1, xi+1, · · · , xn). Otherwise, the transition probability is
set to 0.

Algorithm 3: Gibbs Sampling
Input: the target distribution p(x1, · · · , xn), number of samples M

Output: M samples from distribution p(x1, · · · , xn)

1 generate an initial state (X
(0)
1 , · · · , x(0)

n )

2 for t = 0 to N +M − 1 do
3 sample xt+1

1 ∼ P (x1 | xt
2, · · ·xt

n)

4 sample xt+1
2 ∼ P (x2 | xt+1

1 , xt
3, · · ·xt

n)

5
...

6 sample xt+1
n−1 ∼ P (xt+1

n−1 | xt+1
2 , · · · , xt+1

n−2, x
t
n)

7 sample xt+1
n ∼ P (xn | xt+1

2 , · · ·xt+1
n−1)

8 end
9 return the sequence of states (xt

1, x
t
2, · · · , xt

n) at time t ≥ N .
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