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1 Quasi-Newton Methods

1.1 Objective Function
Given unconstrained, smooth convex optimization

minf(x) (1)

where f is convex, twice continuously differentiable, and dom(f) = Rn.

1.2 Newton’s Method
Recall the motivation for gradient descent step at x: we minimize the quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) + 1

2t
||y − x||22 (2)

over y, and this yields the update x+ = x− t∇f(x)

Pure Newton’s method uses in a sense a better quadratic approximation:

f(y) ≈ f(x) +∇f(x)T (y − x) + 1

2
(y − x)T∇2f(x)(y − x) (3)

and minimizes over y to yield x+ = x− (∇2f(x))−1∇f(x).

Newton Step (Direction):
4xnt = −∇2f(x)−1∇f(x) (4)

• x+4xnt minimizes second order approximation

• 4xnt is the steepest descent direction at x in local Hessian norm:

||u||∇2f(x) = (uT∇2f(x)u)
1
2 (5)

Figure 1: The function f (solid) and its second-order approximation f̂ at x(dashed). The Newton step 4xnt is
what must be added to x to give the minimizer of f̂

The Newton step can be used in a line search method when ∇2f(x) is positive definite, for in this case we have
(from formula(4))

xk+1 − xk = 4xnt = −∇2f(x)−1∇f(x)
−4xnt∇2f(x) = ∇f(x)
∇f(x)4xnt = −4xnt∇2f(x)4xnt

≤ 0 (as ∇2f(x) is positive definite)
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Unless the gradient ∇f(x) is zero, we have that ∇f(x)4xnt ≤ 0 (or f(x(k+1)) − f(x(k)) ≤ 0), so the Newton
step is a descent step.
Newton Method:

x+ = x− t∇2f(x)−1∇f(x) (6)
In pure newton method, t =1, while in practice we use backtracking line search to adaptively choose the step
length t.

• advantages: fast convergence

• disadvantages: requires second derivatives, too expensive for large scale applications, and Hessian may be
singular

1.3 Variable Metric Methods
Due to the difficulty of calculation on inverse of Hessian ∇2f(x), we update

x+ = x− tH−1∇f(x) (7)

with H � 0, approximation of the ∇2f(x).

• avoid calculation of second derivatives

• simplify computation of search direction ?

Variable Metric Interpretation:
4x = −H−1∇f(x) (8)

is the steepest descent direction at x for quadratic norm (weighted Frobenius norm)

||z||H = (zTHz)
1
2 (9)

1.4 Quasi-Newton Methods
Quasi-Newton search directions provide an attractive alternative to Newton’s method in that they do not require
computation of the Hessian and yet still attain a superlinear rate of converangence.
Algorithm 1: Quasi-Newton Methods
1 Given starting point x0 ∈ dom(f), H0 � 0 repeat
2 1. compute quasi-Newton direction 4x = −H−1k ∇f(xk) 2. determine step size t (e.g. by

backtracking line search) 3. compute xk+1 = xk + t4x 4. compute Hk+1

3 until k = 0, 1, 2, ..., until a stopping criterion is satisfied ;

• different methods use different rules for updating H in step 4.

• can also propagate H−1k to simplify calculation of 4x.

• the updates make use of the fact that changes in the gradient provide information about the second
derivative of f along the search direction.

We will discuss several different rules for updating H in step 4, such as DFP, BFGS, and SR1 in following
sections.

1.5 Davidon-Fletcher-Powell(DFP) Algorithm
We know that we can use a quadratic function by Tayler theorem to approximate the objective function.

f(xk+1) ≈ f(xk) +∇f(xk)(xk+1 − xk) +
1

2
(xk+1 − xk)T∇2f(xk)(xk+1 − xk) (10)

Take the derivative for both sides with respect to xk+1:

∇f(xk+1) ≈ ∇f(xk) +∇2f(xk)(xk+1 − xk) (11)

⇒ ∇2f(xk)(xk+1 − xk) ≈ ∇f(xk+1)−∇f(xk) (12)
We choose the new Hessian approximation Hk+1 (like step 4 in algorithm) so that it mimics the property
(formula(12)) of the true Hessian, that is, we use the following condition, known as the secant equation:

Hk+1sk = yk (13)

to update the H, where
sk = xk+1 − xk = t4x, yk = ∇f(xk+1)−∇f(xk) (14)

Why H should be positive definite ?
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1. according to formula (4), positive definite of ∇2f(x) ensures newton step is descent step, therefore, the
approximation H should be positive definite to make it descent.

2. according to monotonicity of gradient f and secant equation,

sTk yk = (xk+1 − xk)T∇f(xk+1)−∇f(xk) > 0 with xk 6= xk+1

sTkHsk = sTk yk > 0

Why H should be symmetric matrix?
Because the Hessian ∇2f(x) is the matrix containing the second derivatives of the function at that point. And
the second-derivative is independent of the order in which derivatives are taken. Therefore, for better approxi-
mation of ∇f (x), we H should be symmetric.

Hessian Matrix Correction
Understanding 1
It turns out there are infinitely many symmetric positive definite matrices Hk+1 which satisfy the secant equa-
tion. To determine Hk+1 uniquely, we must impose the additional condition that among all symmetric matrices
satisfying the secant equation, Hk+1 is, in some sense, closest to the current matrix Hk.
In other words, we need to solve the matrix minimization problem:

min
H
||H −Hk|| subject to H = HT , Hsk = yk (15)

where sTk yk > 0 and Hk is symmetric and positive definite.
Different matrix norm can be used in ||H −Hk||, and each norm gives a different quasi-Newton method. But,
because of the easy computation and scale-invariant optimization, we use the weighted Frobenius norm here,

||A||W = ||W 1/2AW 1/2||F = ||C||F =

√√√√ n∑
i

n∑
j

c2ij (16)

The weight matrix W can be chosen as any matrix satisfying the relation Wyk = sk.With the weighting matrix
and this norm, the unique solution is

Hk+1 = (I − γkyksTk )Hk(I − γkskyTk ) + γkyky
T
k , γk =

1

yTk sk
(17)

Note that, γk is a scalar, and yksTk , sky
T
k , yky

T
k are rank-1 matrices. The inverse of Hk is useful for the imple-

mentation of the method, since it allows the search direction 4xk to be computed using a simple matrix-vector
product. We let

Bk = H−1k (18)

and use
Sherman-Morrison-Woodbury Formula: If P ∈ Rn×n is non-singular and p, q ∈ Rn, and if

P = Q+ pqT (19)

then

P−1 = Q−1 − Q−1pqTQ−1

1 + qTQ−1p
(20)

and we end up with

Bk+1 = Bk −
Bkyky

T
k Bk

yTk Bkyk︸ ︷︷ ︸
correction 1

+
sks

T
k

yTk sk︸ ︷︷ ︸
correction 2

(21)

Both the correction terms are rank-1 matrices, so that Bk undergoes a rank-2 matrix correction in each iteration.

Understanding 2
From formula(21), we find that Bk+1 = H−1k+1 can be approximated by adding a rank-2 matrix to Bk = H−1k .
The intuition is, why not use matrix rank-2 correction to update Bk+1, and then compute its inverse to get
Hessian approximation Hk+1. Note, we don’t assume the closeness condition between Hk+1 and Hk here.
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First, we want to add a rank-2 matrix on Bk, and we define

Bk+1 = Bk +4Bk (22)

where
4Bk = αvvT + βuuT ,where v, u ∈ Rn, α, β ∈ R (23)

Outer product of vectors vvT and uuT give two symmetric rank-1 matrices, of which addition gives a rank-2
matrix correction. Since we are updating Bk+1 rather than Hk+1, the secant equation can be modified to

Bk+1yk = sk (same to Hk+1sk = yk) (24)

Plug in the formula (17) into secant equation,

(Bk +4Bk)yk = sk (25)

⇓

(Bk + αvvT + βuuT )yk = sk

Bkyk + αvvT yk + βuuT yk = sk

Bkyk + v(αvT yk) + u(βuT yk) = sk

Since v, u, sk, yk ∈ Rn and α, β ∈ R, αvT yk and βuT yk are scalars. To satisfy above equation, we let αvT yk = −1,
and βuT yk = 1, that is

Bkyk − v + u = sk (26)

And let v = Bkyk and u = sk to satisfy above equation. We get

α = − 1

yTk B
T
k yk

= − 1

yTk Bkyk
, β =

1

sTk yk
, v = Bkyk, u = sk (27)

then plug into formula (23),

4Bk = −Bkyky
T
k Bk

yTk BkyK
+
sks

T
k

sTk yk
(28)

Bk+1 = Bk −
Bkyky

T
k Bk

yTk Bkyk
+
sks

T
k

sTk yk
(29)
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1.6 Broyden-Fletcher-Goldfarb-Shanno(BFGS) Algorithm
Understanding 1:
BFGS updating imposes conditions directly on the Bk(inverse of Hk) instead of imposing conditions on the
Hessian approximation Hk. To do like this, we can fasten the algorithm by skipping a step to compute the
inverse of Hessian approximation in each iteration.
There are several similar constraints on Bk:

1. Bk should be symmetric and positive definite

2. should satisfy the secant equation
Bk+1yk = sk (30)

The condition of closeness to Bk is now specified by the following:

min
B
||B −Bk|| subject to B = BT , Byk = sk (31)

With the weighed Frobenius norm and any weight matrices Ws.t.Wsk = yk, the unique solution Bk+1 is

Bk+1 = (I − δkskyTk )Bk(I − δkyksTk ) + δksks
T
k , δk =

1

yksk
(32)

which translated back to the Hessian approximation Hk+1 yields

Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

yTk sk
(33)

Understanding 2:
Here, we do not assume the closeness condition on Bk. According to formula(33), we want to make a small
tweak on Hk, such that

Hk+1 = Hk +4Hk (34)

where
4Hk = αvvT + βuuT ,where v, u ∈ Rn, α, β ∈ R (35)

Outer product of vectors vvT and uuT give two symmetric rank-1 matrices, of which addition gives a rank-2
matrix correction. By adding a rank-2 matrix, it seems actually assume that the closeness between Hk+1 and
Hk, which reflect the real closeness of true Hessian ∇2f(xk)

Plug in the formula (35) into secant equation (formula(13)),

(Hk +4Hk)sk = yk (36)

⇓

(Hk + αvvT + βuuT )sk = yk

Hksk + αvvT sk + βuuT sk = yk

Hksk + v(αvT sk) + u(βuT sk) = yk

Since v, u, sk ∈ Rn and α, β ∈ R, αvT sk and βuT sk are scalars. To satisfy above equation, we let αvT sk = −1,
and βuT sk = 1, that is

Hksk − v + u = yk (37)

And let v = Hksk and u = yk to satisfy above equation. We get

α = − 1

sTkH
T
k sk

= − 1

sTkHksk
, β =

1

yTk sk
, v = Hksk, u = yk (38)

then plug into formula (35),

4Hk = −Hksks
T
kHk

sTkHksK
+
yky

T
k

yTk sk
(39)

Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

yTk sk
(40)
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1.7 Comparison Between DFP and BFGS
Same: Both keep positive definite during updating.
Why BFGS is duall of DFP ?
Why BFGS is better than DFP ?
What is the self-correcting properties for BFGS ?
Can we use SVD in the method ?

1.8 Limited Memory BFGS (L-BFGS)
BFGS is a very effective optimization algorithm that does not require computing the exact Hessian, or finding
any matrix inverses. However, it is not possible to use BFGS on problems with high dimensional variable,
dom(f) ∈ Rn, n is very large (say millions), because in that case it is impossible to store or manipulate the
approximiate inverse Hessian H, which is of size n2.
L-BFGS solves this problem by storing the approximate Hessian in a compressed form that requires storing only
a constant multiple of vectors n. In particular, L-BFGS only remembers updates from the last m iterations, so
information about iterates before that is lost. Furthermore, the search direction can be computed in a number
of operation that is also linear in nandm.

• instead we store the m (e.g., m = 30) most recent values of

sj = xj+1 − x(j), yj = ∇f(xj+1)−∇f(xj) (41)

• we evaluate 4x = H−1k ∇f(xk) recursively, using

H−1j =
(
I −

sjy
T
j

yTj sj

)
H−1j−1

(
I −

yjs
T
j

yTj sj

)
+
sjs

T
j

yTj sj
(42)

for j = k, k − 1, ..., k −m+ 1, assuming, for example, H−1k−m = I

• time cost per iteration is O(nm), space cost is O(nm)

1.9 SR1
Why not use a rank-1 correction rather than a rank-2 correction on DFP and BFGS is because by adding a
rank-1 matrix to Hk will not always derive a positive definite Hk+1. SR1 algorithm does not guarantee the
update matrix to maintain positive definiteness.

1.10 The Broyden’s Method
The Broyden’s Method does not require the update matrix to be symmetric and it is used to find the root of a
general system of equations (rather than the greadient) by updating the Jacobian (rather than the Hessian).
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