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1 Conditional Random Fields and Structured SVM

Given a set of i.i.d sampled training data D = {(xm, ym)}m=1,··· ,M , where (xm, ym) ∼ d(x, y), xm ∈ [0, 1]N ,
and y ∈ {0, 1}N . A set of feature functions are provided such as φ(x, y) = (φ1(x, y), · · · , φK(x, y)). Our task is
to find a good parameterized distribution

p(y|x,w) = 1

Z(x,w)
exp(〈w, φ(x, y)〉) (1)

that well approximate the true distribution d(y|x), where we can adjust the parameter w ∈ RK based on the
training data D. Z(x,w) is known as the partition function

Z(x,w) =
∑
y∈Y

exp(〈w, φ(x, y)〉) (2)

since it is intractable to do the summation over all possible y ∈ Y , we have to use the structural information.

With the maximum likelihood parameter estimation, we can derive the optimal w as

w∗ = argmax
w

p(y1, · · · , yM | x1, · · · , xM ;w) (3)

= argmax
w

M∏
m=1

p(ym|xm;w) (4)

= argmin
w
−

M∑
m=1

log p(ym|xm;w) (5)

= argmin
w
−

M∑
m=1

log

[
1

Z(xm, w)
exp(〈w, φ(xm, ym)〉)

]
(6)

= argmin
w
−

M∑
m=1

[〈w, φ(xm, ym)〉 − logZ(xm, w)] (7)

= argmin
w
−

M∑
m=1

〈w, φ(xm, ym)〉 − log
∑
y∈Y

exp(〈w, φ(x, y)〉)

 (8)

(9)

Alternatively, with the maximum a posterior estimation, we can derive the optimal w as

w∗ = argmax
w∈RK

p(w|D) (10)

= argmin
w∈RD

[− log p(w|D)] (11)

= argmin
w∈RD

[
− log

M∏
m=1

p(ym|xm;w) · p(w)
p(ym|xm)

]
(12)

= argmin
w∈RD

[
− log p(w)−

M∑
m=1

log p (yn|xm, w) + log p (ym|xn)

]
(13)

= argmin
w∈RD

[
− log p(w)−

M∑
m=1

log p (ym|xm, w)

]
(14)

If we set the prior distribution p(w) as constant, then the optimal w is same as the MLE. If we set the prior
distribution as Gaussian:

p(w) = const · exp(− 1

2σ2
‖w‖22) (15)

2



then we have the optimal w as

w∗ = argmin
w

1

2σ2
‖w‖22 −

M∑
m=1

log p(ym|xm;w) (16)

= argmin
w

1

2σ2
‖w‖22 −

M∑
m=1

〈w, φ(xm, ym)〉 − log
∑
y∈Y

exp(〈w, φ(xm, y)〉)

 (17)

= argmin
w

1

2σ2
‖w‖22 +

M∑
m=1

log∑
y∈Y

exp(〈w, φ(xm, y)〉)− log exp(〈w, φ(xm, ym)〉)

 (18)

= argmin
w

1

2σ2
‖w‖22 +

M∑
m=1

[
log

∑
y∈Y exp(〈w, φ(xm, y)〉)
exp(〈w, φ(xm, ym)〉)

]
(19)

= argmin
w

1

2σ2
‖w‖22 +

M∑
m=1

log∑
y∈Y

exp(〈w, φ(xm, y)〉)
exp(〈w, φ(xm, ym)〉)

 (20)

= argmin
w

1

2σ2
‖w‖22 +

M∑
m=1

log∑
y∈Y

exp(〈w, φ(xm, y)〉 − 〈w, φ(xm, ym)〉)

 (21)

(22)

On the other hand, the objective of the structured SVM with the re-scaled soft margin can be formulated as [1]

min
w

1

2
‖w‖22 +

C

M

M∑
m=1

[
max
y∈Y

4(ym, y) + 〈w, φ(xm, y)〉 − 〈w, φ(xm, ym)〉)
]

(23)

where maxy∈Y 4(ym, y) + 〈w, φ(xm, y)〉 − 〈w, φ(xm, ym)〉) is known as the hinge loss, which is a convex but
non-differentiable surrogate loss function. We can see that the CRF and StructSVM have more in common
than usually assumed. The log

∑
y∈Y exp can be interpreted as a soft-max. The essential difference is that,

StructSVM is cost-augmented i.e. 4(ym, y), but CRF is not.

2 Training Criteria

We review several criteria for training the weights w, including the conditional log-likelihood, max-margin, and
risk augmented [4].

2.1 Conditional Log Likelihood

The trivial objective is to minimize the negative conditional log-likelihood without regularization:

NCLL : min
w
−

M∑
m=1

〈w, φ(xm, ym)〉 − log
∑
y∈Y

exp(〈w, φ(xm, y)〉)

 (24)

2.2 Max-Margin

MM : min
w

C

M

M∑
m=1

[
max
y∈Y

4(ym, y) + 〈w, φ(xm, y)〉 − 〈w, φ(xm, ym)〉)
]

min
w
−

M∑
m=1

{
〈w, φ(xm, ym)〉)−max

y∈Y
(〈w, φ(xm, y) +4(ym, y)〉)

} (25)

2.3 Risk-Augmented

The risk or reward augmented objective is motivated by the objective of reinforcement learning [5].

Risk : min
w

M∑
m=1

∑
y∈Y

p(y|xm;w) · 4 (y, ym)

 (26)
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where in risk minimizatoin4(y, ym) denotes the cost or difference between y and ym, which typically is assumed
to be non-negative; We want to adjust w such that the probability of p(y|xm;w) is small if the cost is large.
Unlike previous two objectives, the risk is typically non-convex. In addition, the computation of gradient of
risk w.r.t w is challenging.

2.4 Soft Max-Margin

We see that the conditional log-likelihood is not cost augmented, and the log
∑

exp can be interpreted as soft
max operation. It is intuitive to make it aligned with the max-margin objective by augmenting a cost.

SoftMM : min
w
−

M∑
m=1

〈w, φ(xm, ym)〉 − log
∑
y∈Y

exp(〈w, φ(xm, y)〉+4(ym, y))

 (27)

All the objectives above are called the surrogate loss functions, which are used as the proxy of the 0−1 empirical
loss. Here, we will discuss the difference between the Soft Max-Margin and other objectives. We will show that:

• Soft Max-Margin is the convex differential upper bound of the max-margin loss, since the soft-max is a
smooth upper bound of max operation.

• Soft Max-Margin is the convex upper bound of the NCLL and Risk objectives. We first denote

Zm =
∑
y∈Y

exp(w>φ(xm, , y)) (28)

Soft MaxMargin = −
M∑
m=1

〈w, φ(xm, ym)〉 − log
∑
y∈Y

exp(〈w, φ(xm, y)〉+4(ym, y))

 (29)

= −
M∑
m=1

〈w, φ(xm, ym)〉 − log

Zm ·∑
y∈Y

exp(〈w, φ(xm, y)〉+4(ym, y))

Zm

 (30)

= −
M∑
m=1

〈w, φ(xm, ym)〉 − log

Zm ·∑
y∈Y

exp(〈w, φ(xm, y)〉)
Zm

· exp(4(ym, y))

 (31)

= −
M∑
m=1

〈w, φ(xm, ym)〉 − log

Zm ·∑
y∈Y

p(y|xm;w) · exp(4(ym, y))

 (32)

= −
M∑
m=1

〈w, φ(xm, ym)〉 − logZm − log

·∑
y∈Y

p(y|xm;w) · exp(4(ym, y))

 (33)

= −
M∑
m=1

{〈w, φ(xm, ym)〉 − logZm}︸ ︷︷ ︸
NCLL

+

M∑
m=1

{
logEp(y|xm;w) [exp(4(ym, y))]

}
(34)

(35)

Since log is concave, we can use the Jensen’s inequality to obtain, for all m:

logEp(y|xm;w) [exp(4(ym, y))] ≥ Ep(y|xm;w) [log exp(4(ym, y))] = Ep(y|xm;w) [4(ym, y)] = Risk (36)

Since NCLL≥ 0 and logEp(y|xm;w) [exp(4(ym, y))] ≥ 0 (assumed 4(ym, y) ≥ 0), Soft Max-Margin is
convex upper bound of the objectives of NCLL and Risk. The computation of the gradient of Soft
MaxMargin w.r.t w is more easier than using the Risk, we may consider to use this as upper bound of
risk to find a good solution of risk minimization.
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Figure 1: Surrogate Loss Functions for Binary Classification. m is the multiplier for the cost associated with
making wrong classification decision; here m = 1. x-axis means the f(x) · y∗

.

3 Reward Augmented Maximum Likelihood

As stated in previous section, maximizing the negative conditional log-likelihood on training data D will make
all negative outputs are equally wrong, and none is preferred over the others.

LML(w;D) =
∑

(xm,ym)∈D

− log p (ym|xm;w) (37)

=
∑

(xm,ym)∈D

DKL(δ(y|ym)‖p(y|xm;w)) (38)

where δ(y|ym) = 1 at y = ym and 0 otherwise. The optimal w is achieved when δ(y|ym) = p(y|xm;w), which
the ground-truth has 1.0 probability, and all negative outputs have 0 probability.

3.1 Expected Reward Maximization with Entropy Regularization

It is intuitive that we may find a good parameter w such that y ∈ Y which are close to ground-truth y∗ has
higher conditional probability than those far different from the ground-truth, and such w could better capture
the energy landscape. But, how can we achieve it ? Motivated by the (batch-mode) reinforcement learning on
structured prediction, whose objective is to maximize the expected reward or minimize the negative expected
reward:

LRL(w; τ,D) =
∑

(xm,ym)∈D

−∑
y∈Y

pθ(y|xm) · r (y,ym)

 (39)

where r(y, ym) ≥ 0 denotes the reward. Sometimes it is preferred to add an entropy regularizer:

LRL(w; τ,D) =
∑

(xm,ym)∈D

−τ ·H (p(y|xm;w))−
∑
y∈Y

p(y|xm;w) · r (y,ym)

 (40)

where τ controls the degree of regularization, and H((p(y|xm;w))) is the entropy:

H (p(y|xm;w)) = −
∑
y∈Y

p(y|xm;w) · log p(y|xm;w) (41)

3.2 Relation to Reward Augmented Maximum Likelihood

We will show the connection between the expected reward maximization with entropy regularization and
the reward-augmented conditional log-likelihood maximization. In the previous section, we discuss the risk-
augmented conditional likelihood minimization without the log, but we can also add the log since log is mono-
tone increasing. Then in risk minimization, we want to adjust the w such that large risk corresponds to small
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log-likelihood, and we want to minimize the risk-augmented likelihood. From the reward maximization per-
spective, we want to adjust the w such that large reward corresponds to small negative log-likelihood (large
log-likelihood), and thus we want to minimize the reward-augmented negative likelihood.

We can further reformulate the objective as below:

LRL(w; τ,D) =
∑

(xm,ym)∈D

−τ ·H (p(y|xm;w))−
∑
y∈Y

p(y|xm;w) · r (y,ym)

 (42)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) · log p(y|xm;w)−
∑
y∈Y

p(y|xm;w) · r (y,y
m)

τ

 (43)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) ·
[
log p(y|xm;w)− r (y,ym)

τ

] (44)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) ·
[
log p(y|xm;w)− log exp

(
r (y,ym)

τ

)] (45)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) ·
[
log p(y|xm;w)− log exp

(
r (y,ym)

τ

)
− log

1

Z(ym; τ)
+ log

1

Z(ym; τ)

]
(46)

= τ
∑

(xm,ym)∈D


∑
y∈Y

p(y|xm;w) ·

log p(y|xm;w)− log

(
1

Z(ym; τ)
exp

(
r (y,ym)

τ

))
︸ ︷︷ ︸

q(y|ym;τ)

+ log
1

Z(ym; τ)︸ ︷︷ ︸
const.




(47)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) · [log p(y|xm;w)− log q(y|ym; τ)]

+ const. (48)

= τ
∑

(xm,ym)∈D

∑
y∈Y

p(y|xm;w) ·
[
log

p(y|xm;w)

q(y|ym; τ)

]+ const. (49)

= τ
∑

(xm,ym)∈D

DKL (p(y|xm;w)‖q(y|ym; τ)) + const. (50)

(51)

where Z(ym; τ) =
∑

y∈Y exp(r (y,y
m) /τ), and q(y|ym; τ) is defined as the exponentiated payoff distribu-

tion:
q(y|ym; τ) =

1

Z(ym; τ)
exp

(
r (y,ym)

τ

)
(52)

We can see that minimizing the LRL is same as minimizing theDKL. However, minimizing the LRL is challenging
because of the large variance of the gradients, and minimizing the DKL by using q(y|ym; τ) to approximate
p(y|xm;w) is also difficult since w is not fixed. Maybe we can exploit the f-GAN to minimize the KL-Divergence
here.

Alternatively, we may try to optimize the KL-divergence in opposite directions, that is

DKL (q(y|ym; τ)‖p(y|xm;w)) , (53)

since they both have the same global optimum of pw. In addition, we can derived that

DKL (q(y|ym; τ)‖p(y|xm;w)) =
∑

(xm,ym)∈D

−∑
y∈Y

q (y|ym; τ) log pθ(y|x)

− ∑
(xm,ym)∈D

H (q (y|ym, τ)) (54)

where we can view the first term as Reward Augmented Maximum Likelihood objective and second term
as constant value:

LRAML(w; τ,D) =
∑

(xm,ym)∈D

−∑
y∈Y

q (y|ym; τ) log pθ(y|x)

 (55)
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which is our desirable objective at the very beginning. Therefore, we build the connection between the re-
inforcement learning objective with entropy regularization on structured prediction problems and the reward
augmented maximum likelihood, where the latter is more easier to train.

In summary, the key problem here is to do the distribution approximation, and two direction of KL-Divergence
lead to two different objectives.

3.3 Optimization and Sampling

To optimize the reward augmented maximum likelihood objective, LRAML(w; τ), we need to

1. draw unbiased samples from q(y|y∗; τ); given mini-batch y∗, we draw some y samples.

2. Based on those samples, we can estimate the ∇wLRAML(w; τ)

∇wLRAML(w; τ) = Eq(y|ym;τ) [−∇w log p(y|xm;w)] (56)

But how many samples are enough ? How can we draw samples from q(y|y∗; τ); similarly, how can we
draw samples from an exponential distribution [2]?

3. If we can draw N samples from q(y|ym; τ) for each ym, then we can compute the

1

M

M∑
m=1

1

N

N∑
n=1

−∇w log p(ym|xm;w) (57)

and apply stochastic gradient descent.

For each ground-truth output y∗, we need to sample auxiliary outputs:

1. We sample from q(y|y∗; τ) by stratified sampling, where we first select a particular distance, and then
sample an output with that distance value.

2.
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