Note on Optimization Methods

Chunpai Wang

October 2015

1 Subgradient Method

1.1 Recall

Epigraph: the epigraph, denoted epi(f), describes the set of input-output pairs that f can achieve, as well as "anything above"

$$epi(f) := \{(x,t) | x \in dom(f), f(x) \le t\}$$
 (1)

<u>Level sets</u>: level sets are sets of points that achieve exactly a certain value for f. Precisely, the t-level set of f is defined by

$$L_t(f) := \{ x \in dom(f) | f(x) = t \}$$
(2)

<u>Sub-level Sets:</u> t-sub-level set of f is defined by

$$S_t(f) := \{ x \in dom(f) \mid f(x) \le t \}$$

$$(3)$$

Notice the difference between definitions of epigraph and sub-level sets. First Order Condition: for convex differentiable f

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \quad \forall y \in dom(f)$$
(4)

- the first order approximation of f at x is a global lower bound.
- $\nabla f(x)$ defines non-vertical supporting hyperplane to epi(f) at (x, f(x))

$$f(x) + \nabla f(x)(y - x) \le t \quad \forall (y, t) \in epi(f)$$
(5)

$$\Leftrightarrow \begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y,t) \in epi(f) \tag{6}$$

• note that, $y \in dom(f)$ as well, not y-axis. $\forall (y,t) \in epi(f)$

1.2 Why Subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function

1.3 Subgradients

Subgradient: A vector $g \in \mathbb{R}^n$ is a subgradient of function $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in dom(f)$ if

$$f(y) \ge f(x) + g^T(y - x) \quad \forall y \in dom(f)$$

$$\tag{7}$$

Figure 1: At x_1 , the convex function f is differentiable, and g_1 (which is the derivative of f at x_1) is the unique subgradient at x_1 . At the point x_2 , f is not differentiable. At this point, f has many subgradients: two subgradients, g_2 and g_3 are shown.

Properties:

- The affine function (of y) $f(x) + g^T(y x)$ is a global lower bound on f(y).
- Geometrically, g define non-vertical supporting hyperplane to epi(f) at (x, f(x)) or (g, -1) supports epi(f) at (x, f(x)).

$$f(x) + g(y - x) \le t \quad \forall (y, t) \in epi(f)$$
(8)

$$\Leftrightarrow \begin{bmatrix} g \\ -1 \end{bmatrix} \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0 \quad \forall (y,t) \in epi(f) \tag{9}$$

Figure 2: A vector $g \in \mathbb{R}^n$ is a subgradient of f at x if and only if (g, -1) defines a supporting hyperplane to epi(f) at (x, f(x))

- If f is convex and differentiable, then $\nabla f(x)$ is a subgradient of f at x
- If f is not differentiable at x, there can be more than one subgradient of a function f at a point x.

1.4 Subdifferential

Subdifferential: the subdifferential $\partial f(x)$ of f at x is the set of all subgradients:

$$\partial f(x) = \{g|f(y) \ge f(x) + g^T(y - x) \quad \forall y \in dom(f)\}$$

$$\tag{10}$$

- A function f is called subdifferentiable at x if there exists at least one subgradient at x.
- A function f is called subdifferentiable if it is subdifferentiable at all $x \in dom(f)$.

Properties:

• The subdifferentiable $\partial f(x)$ is always <u>a closed convex set</u>, even if f is not convex. This follows from the fact that $\partial f(x)$ is the intersection of an infinite set of halfspaces:

$$\partial f(x) = \bigcap_{y \in dom(f)} \{g | f(y) \ge f(x) + g^T(y - x)\}$$
(11)

- If f is continuous at x, then the subdifferential $\partial f(x)$ is bounded. Choose some $\epsilon > 0$ such that $-\infty < \frac{f}{4} \leq f(y) \leq \bar{f} < \infty$ for all $y \in \mathbb{R}^n$ such that $||y x||_2 \leq \epsilon$. If $\partial f(x)$ is unbounded, then there is a sequence $g_n \in \partial f(x)$ such that $||g_n||_2 \to \infty$. Taking the sequence $y_n = x + \epsilon \frac{g_n}{||g_n||_2}$, we find that $f(y_n) \geq f(x) + g_n^T(y_n x) = f(x) + \epsilon ||g_n||_2 \to \infty$, which is a contradiction to $f(y_n)$ being bounded.
- If f is convex and differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$, i.e., its gradient is its only subgradient. Conversely, if f is convex and $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$.
- Existence of Subgradients: If f is convex and $x \in int dom(f)$, then $\partial f(x)$ is nonempty and bounded.

Proof.

• Monotonicity: subdifferential of a convex function is a monotone operator:

$$(u-v)^T(y-x) \ge 0 \quad \forall x, y, \quad u \in \partial f(x), \ v \in \partial f(y),$$
(12)

which means, if y is greater than x, then subdifferential $\partial f(y) \ge \partial f(x)$.

Proof. Because $u \in \partial f(x)$, we can get by definition

$$f(y) \ge f(x) + u^T(y - x)$$

and because $v \in \partial f(y)$, we can get by definition

$$f(x) \ge f(y) + v^T (x - y)$$

Combining these two inequalities shows monotonicity

$$f(y) + f(x) \ge f(x) + f(y) + u^{T}(y - x) + v^{T}(x - y)$$
$$(u - v)^{T}(x - y) \ge 0$$

	-	_	-	

1.5 Examples

(Example 1) Absolute value f(x) = |x|

Figure 3: Consider f(x) = |x|. For x < 0 the subgradient is unique: $\partial f(x) = \{-1\}$. Similarly, for x > 0 we have $\partial f(x) = 1$. At x = 0 the subdifferential is defined by the inequality $|y| \ge g(y - 0)$ for all y, which is satisfied if and only if $g \in [-1, 1]$. Therefore, we have $\partial f(0) = [-1, 1]$.

(Example 2) $f(x) = \max\{f_1(x), f_2(x)\}$ f_1, f_2 convex and differentiable

Figure 4: For $f_1(x) > f_2(x)$, unique subgradient $g = \nabla f_1(x)$; for $f_2(x) > f_1(x)$, unique subgradient $g = \nabla f_2(x)$; for $f_1(x) = f_2(x)$, subgradient g is any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$. Note, $g \in \mathbb{R}^n$, when n = 1, g is scalar and line segment is just an interval; when n > 1, for example, $g \in \mathbb{R}^2$, $f_1(x) = (1,0)$ and $f_2(x) = (2,3)$, g is any point between line segment from point (1,0) to (2,3)

Figure 5: For $x \neq 0$, $\partial f(x) = \frac{x}{||x||_2}$; for x = 0, $\partial f(x) = \{g|||g||_2 \le 1\}$

(Example 4) l_1 norm $f(x) = ||x||_1$

Figure 6: For $x_i \neq 0$, unique i^{th} component $g_i = sign(x_i)$; for $x_i = 0$, i^{th} component g_i is any element of [-1,1]

Questions:

If a function has subgradient at every point, can we prove the function is convex ? *Think about the supporting hyperplane theory and subgradient.*

1.6 Connection to Convex Geometry

Now we try to derive subgradient from indication function of convex set. Convex set $C \subset \mathbb{R}^n$, consider indicator function $I_C : \mathbb{R}^n \to \mathbb{R}$,

$$I_C(x) = I(x \in C) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C \end{cases}$$
(13)

For $x \in C, \partial I_C(x) = N_C(x)$, the normal cone of C at x

$$N_C(x) = \{g \in \mathbb{R}^n : g^T x \ge g^T y\} \text{ for any } y \in C$$
(14)

Proof. By definition of subgradient g.

$$I_C(y) \ge I_C(x) + g^T(y - x) \quad \text{for all } y \tag{15}$$

- for $y \notin C$, $I_C(y) = \infty$
- for $y \in C$, this means $0 \ge g^T(y-x)$

For $x \notin C$, $I_C(x) = \infty$. You cannot find any points $y \in C$ to make inequality (15) satisfied. This is also a proof of existence of subgradient that $x \in int dom(f)$.

1.7 Optimality Condition

Subgradient Optimality Condition: A point x^* is a minimizer of a function f (convex or not) if and only if f is subdifferentiable at x^* and $0 \in \partial f(x^*)$, i.e., g = 0 is a subgradient of f at x^* .

$$f(x^*) = \min_{x \to 0} f(x) \quad \Leftrightarrow \quad 0 \in \partial f(x^*) \tag{16}$$

Proof. From the fact that $f(x) \ge f(x^*)$ for all $x \in dom(f)$. Clearly, if f is subdifferentiable at x^* with $0 \in \partial f(x^*)$, then $f(x) \ge f(x^*) + 0^T(x - x^*) = f(x^*)$ for all x. Let g = 0 being a subgradient means that for all y

<u>Remark</u>: while this simple characterization of optimality via the subdifferential holds for nonconvex functions, it is not particularly useful in that case, since we generally cannot find the subdifferential of a nonconvex function.

Theorem 1.1. For f convex and differentiable, the problem

$$\min_{x} f(x) \quad subject \ to \ x \in C \tag{17}$$

is solved at x if and only if

$$\nabla f(x)^T (y - x) \ge 0 \quad \text{for all} \ y \in C \tag{18}$$

Proof. First recast problem as

$$\min_{x} f(x) + I_C(x) \tag{19}$$

Now we apply subgradient optimality: $0 \in \partial(f(x) + I_C(x))$. We get,

$$\begin{aligned} 0 \in \partial(f(x) + I_C(x)) &\Leftrightarrow 0 \in \{\partial f(x)\} + N_C(x) \\ &\Leftrightarrow -\nabla f(x) \in N_C(x) & \text{(because } f \text{ is convex and differentiable)} \\ &\Leftrightarrow -\nabla f(x)^T x \ge -\nabla f(x)^T y \text{ for all } y \in C \\ &\Leftrightarrow \nabla f(x)^T (y - x) \ge 0 \text{ for all } y \in C \end{aligned}$$

Example: Lasso Optimality Conditions. Given $A \in \mathbb{R}^{n \times p}$, $b \in \mathbb{R}^n$, lasso problem can be parametrized as:

$$\min_{x \in \mathbb{R}^p} \frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1 \tag{20}$$

where $\lambda \geq 0$. And we can get from subgradient optimality that:

$$0 \in \partial\left(\frac{1}{2}||Ax - b||_2^2 + \lambda||x||_1\right) \tag{21}$$

$$\Leftrightarrow 0 \in A^T(Ax - b) + \lambda \partial ||x||_1 \tag{22}$$

$$\Leftrightarrow A^T(Ax - b) = -\lambda v \tag{23}$$

for some $v \in \partial ||x||_1$, i.e., (check the subgradient of l-1 norm on page 48)

$$v_i \in \begin{cases} \{1\} & if \ x_i > 0\\ \{-1\} & if \ x_i < 0, i = 1, ..., p\\ [-1,1] & if \ x_i = 0 \end{cases}$$
(24)

Write $A_1, A_2, ..., A_p$ for columns of A. Then subgradient optimality of lasso becomes:

$$\begin{cases} A_i^T(Ax-b) = -\lambda \ sign(x_i) & if \ x_i \neq 0\\ |A_i^T(Ax-b)| \le \lambda & if \ x_i = 0 \end{cases}$$
(25)

Example: Soft-Thresholding. Simplified Lasso problem with A = I:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||x - b||_2^2 + \lambda ||x||_1$$
(26)

This we can solve directly using subgradient optimality. The closed form solution is $x = S_{\lambda}(b)$, where S_{λ} is the soft-thresholding operator:

$$\begin{cases} b_i - \lambda & if \quad b_i > \lambda \\ 0 & if - \lambda \le b_i \le \lambda, i = 1, ..., n \\ b_i + \lambda & if \quad b_i < -\lambda \end{cases}$$
(27)

Check: for Lasso problem, subgradient optimality conditions are

$$\begin{cases} A_i^T(Ax - b) = -\lambda \ sign(x_i) & if \ x_i \neq 0\\ |A_i^T(Ax - b)| \le \lambda & if \ x_i = 0 \end{cases}$$

Now plug in $x = S_{\lambda}(b)$ and check these are satisfied:

- when $b_i > \lambda$, $x_i = b_i \lambda > 0$, so $x_i b_i = -\lambda = -\lambda \cdot 1$
- when $b_i < -\lambda, x_i = b_i + \lambda < 0$
- when $|b_i| \leq \lambda, x_i = 0$, and $|x_i b_i| = |b_i| \leq \lambda$

Figure 7: Soft-thresholding in one variable

1.8 Subgradient Calculus

weak subgradient calculus: rules for finding one subgradient

- sufficient for most non-differentiable convex optimization algorithms
- if you can evaluate f(x), you can usually compute a subgradient

strong subgradient calculus: rules for finding $\partial f(x)$ (all subgradients)

- some algorithms, optimality conditions, etc., need entire subdifferential
- can be quite complicated

1.8.1 Basic rules for convex functions

- Scaling: $\partial(af) = a \cdot \partial f$ provided a > 0 to assure convexity.
- <u>Addition</u>: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$
- Affine Composition: if g(x) = f(Ax + b), then

$$\partial g(x) = A^T \partial f(Ax + b)$$

1.8.2 Finite pointwise maximum

If $f(x) = \max_{i=1,\dots,m} f_i(x)$, then

$$\partial f(x) = conv \Big(\bigcup \partial f_i(x) \Big),$$

the convex hull of union of subdifferentials of all active functions at x, since subdifferentials are always convex. <u>Convex Hull</u>: the convex hull of a set C, is the set of all convex combinations of points in C:

$$\operatorname{conv}(C) = \{\theta_1 x_1 + \dots + \theta_k x_k | x_i \in C, \theta_i \ge 0, i = 1, \dots, k, \theta_1 + \dots + \theta_k = 1\}$$
(28)

The convex hull is always convex. It is the smallest convex set that contains C.

Example:
$$l_1 - norm$$
. The l_1 -norm

$$f(x) = ||x||_1 = |x_1| + \dots + |x_n|$$
(29)

is a nondifferentiable convex function of x. To find its subgradients, we note that f can expressed as the maximum of 2^n linear functions:

$$||x||_1 = \max\{s^T x | s_i \in \{-1, 1\}\},\tag{30}$$

so we can apply the rules for the subgradient of the maximum. The first step is to identify an active function $s^T x$, i.e., find an $s \in \{-1, +1\}^n$ such that $s^T x = ||x||_1$. Since the function $s^T x$ is differentiable and has a unique subgradient s. We can therefore take

$$s_i = g_i = \begin{cases} +1 & x_i > 0 \\ -1 & x_i < 0 \\ -1 \text{ or } +1 & x_i = 0 \end{cases}$$
(31)

The subdifferential is the convex hull of all subgradients that can be generated this way:

$$\partial f(x) = \{g|||g||_{\infty} \le 1, g^T x = ||x||_1\} WHY???$$
(32)

1.8.3 Pointwise Supremum

We consider the extension to the supremum over an infinite number of functions,

$$f(x) = \sup_{\alpha \in A} f_{\alpha}(x), \tag{33}$$

where the functions f_{α} are subdifferentiable.

<u>Weak Result</u>: assume maximum is attained, i.e., $\sup_{\alpha \in A} f_{\alpha}(x) = \max_{\alpha \in A} f_{\alpha}(x)$, we can find a subgradient at x.

- find any β for which $f_{\beta}(x) = f(x)$
- choose any $g \in \partial f_{\beta}(x)$

(Partial) Strong Result: define $I(x) = \{ \alpha \in A | f_{\alpha} = f(x) \}$

$$\partial f(x) \supseteq conv \Big(\bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x) \Big)$$
(34)

If A is compact and f_{α} continuous in α , then

$$\partial f(x) = conv \Big(\bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x)\Big)$$
(35)

Example1: maximum eigenvalue of a symmetric matrix. Recall, a real scalar λ is said to be an eigenvalue of symmetric matrix S if there exist a non-zero vector $u \in \mathbb{R}^n$ such that

 $Su = \lambda u,$

where vector u is referred to as an eigenvector associated with the eigenvalue λ . The eigenvector u is said to be normalized if $||u||_2 = 1$. In this case, we have

$$u^T S u = u^T \lambda u = \lambda u^T u = \lambda ||u||_2^2 = \lambda$$

The interpretation of u is that it defines a direction along S behaves just like scalar multiplication. And we can find the smallest and largest eigenvalues of S, denoted λ_{min} and λ_{max} respectively,

$$\lambda_{min} = \min_{x} \{ u^T S u | u^T u = 1 \}$$
(36)

$$\lambda_{max} = \max_{x} \{ u^T S u | u^T u = 1 \}$$
(37)

Now let $f(x) = \lambda_{max}(S(x))$, where $S(x) = S_0 + x_1S_1 + ... + x_nS_n$ with symmetric coefficients S_i . We can express f as the pointwise supremum of convex functions, (why convex ??)

$$f(x) = \lambda_{max}(S(x)) = \sup_{||u||_2 = 1} u^T S(x)u$$
(38)

Since sup means we may not find the maximum of this function by satisfying $||u||_2 = 1$, hence the index set A is

$$A = \{ u \in \mathbb{R}^n |||u||_2 \le 1 \}$$
(39)

here has infinite number of u, therefore we are solving the supremum over an infinite number of functions. Each of the functions $f_u(x) = u^T S(x)u$ is affine in x for fixed u, as can be easily seen from

$$u^{T}S(x)u = u^{T}S_{0}u + x_{1}u^{T}S_{1}u + \dots + x_{n}u^{T}S_{n}u$$
(40)

so it is differentiable with gradient

$$\nabla f_u(x) = (u^T S_1 u + \dots + u^T S_n u) \tag{41}$$

Hence to find a subgradient, we compute an eigenvector u with eigenvalue λ_{max} , normalized to have unit norm, and take

$$g = (u^T S_1 u + \dots + u^T S_n u)$$
(42)

The index set in this example is $A = \{u || |u||_2 = 1\}$ is a compact set (closed and bounded). Therefore,

$$\partial f(x) = conv\{\nabla f_u(x)|u^T S(x)u = \lambda_{max}(S(x)), ||u||_2 = 1\}$$
(43)

Example2: maximum eigenvalue of a symmetric matrix, revisited. Let $f(S) = \lambda_{max}(S)$, where S is a $n \times n$ symmetric matrix. Then as above, $f(S) = \lambda_{max}(S) = \sup_{||u||_2=1} u^T S u$, but we note that $u^T S u = Trace(Suu^T)$, so that each of the functions $f_u(A) = u^T S u$ is linear in S with gradient $\nabla f_u(A) = u u^T$. Then using an identical argument to that above, we find that

$$\partial f(S) = conv\{uu^T |||u||_2 = 1, u^T S u = \lambda_{max}(S)\} = conv\{uu^T = 1, S u = \lambda_{max}(S)u\}$$
(44)

1.8.4 Minimization Over Some Variables

Now, we consider the function with the form

$$f(x) = \inf_{x} H(x, y) \tag{45}$$

where H(x, y) is subdifferentiable and jointly convex in $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. Suppose that the infimum over y in the definition of f(x) is attained on the set $Y_x \subset \mathbb{R}^m$ (where $Y_x \neq 0$), so that H(x, y) = f(x) for $y \in Y_x$. By definition, a vector $g \in \mathbb{R}^n$ is a subgradient of f is and if

$$f(x') \ge f(x) + g^T(x' - x) = H(x, y) + g^T(x' - x)$$
(46)

for all $x' \in \mathbb{R}^n$ and any $y \in Y_x$. This is equivalent to

$$H(x',y') \ge H(x,y) + g^{T}(x'-x) = H(x,y) + \begin{bmatrix} g \\ 0 \end{bmatrix} \left(\begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} x \\ y \end{bmatrix} \right)$$
(47)

for all $(x', y') \in \mathbb{R}^n \times \mathbb{R}^m$ and $x, y \in Y_x$.

<u>Weak Result</u>: to find a subgradient at x,

- find y that minimize H(x, y)
- find subgradient $(g, 0) \in \partial H(x, y)$

In particular we have the result that

$$\partial f(x) = \{g \in \mathbb{R}^n | (g, 0) \in \partial H(x, y) \text{ for some } y \in Y_x\}$$
(48)

Example: Euclidean Distance to Convex Set. Now we are trying to find the a subgradient of

$$f(x) = \inf_{y \in C} ||x - y||_2 \tag{49}$$

where C is a closed convex set. To find a subgradient at x, we can conclude the solution as following,

- if f(x) = 0, that is $x \in C$ and f(x) is the minimum of $||x y||_2$, thus g = 0
- if f(x) > 0, find projection y = P(x) on C

$$g = \frac{1}{||x - y||_2}(x - y) = \frac{1}{||x - P(x)||_2}(x - P(x)) \quad (WHY??????)$$
(50)

The gradient points in the direction of the greatest rate of increase of the function and its magnitude is the slope of the graph in that direction .

1.8.5 Optimal Value Function of a Convex Optimization Problem

Suppose $f : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$ is defined as the optimal value of a convex optimization problem in standard form, with $z \in \mathbb{R}^n$ as optimization variable,

minimize
$$f_0(z)$$

subject to $f_i(z) \le x_i$, $i = 1, ..., m$ and $Az = y$ (51)

In other words, $f(x, y) = \inf_z H(x, y, z)$ where

$$H(x, y, z) = \begin{cases} f_0(z) & f_i(z) \le x_i, i = 1, ..., m, Az = y \\ +\infty & otherwise \end{cases}$$
(52)

which is jointly convex in x, y, z. Subgradients of f can be related to the dual problem of (43) as follows. Suppose we are interested in subdifferentiating f at (x, y). We can express the dual problem of (43) as

maximize
$$g(\lambda) - x^T \lambda - y^T v$$

subject to $\lambda \succeq 0$ (53)

where

$$g(\lambda) = \inf_{z} \left(f_0(z) + \sum_{i=1}^m \lambda_i f_i(z) + v^T A z \right)$$
(54)

1.9 Directional Derivatives and Subgradients

Directional derivative of f at x in the direction v is

$$f'(x;v) = \lim_{\alpha \to 0} \frac{f(x+tv) - f(x)}{t}$$
(55)

(56)

This quantity always exists for <u>convex</u> f, though it may be $+\infty$ or $-\infty$. To see the existence of the limit, we use that the ratio

$$\frac{f(x+tv) - f(x)}{t} \tag{57}$$

is non-decreasing in t. For $0 < t_1 \le t_2$, we have $0 \le t_1/t_2 \le 1$, and

$$\frac{f(x+t_1v) - f(x)}{t_1} = \frac{f(\frac{t_1}{t_2}(x+t_2v) + (1-\frac{t_1}{t_2})x) - f(x)}{t_1}$$
(58)

(convex definition:
$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2)$$
) (59)

$$\leq \frac{\frac{t_1}{t_2}f(x+t_2v)}{t_1} + \frac{(1-\frac{t_1}{t_2})f(x) - f(x)}{t_1} \tag{60}$$

$$=\frac{f(x+t_2v) - f(x)}{t_2}$$
(61)

so the limit in the definition of f'(x; v) exists. Properties: Several properties of directional derivative f'(x; v)

• it is convex in v, and if f is finite in a neighborhood of x, then f'(x; v) exists.