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1 Subgradient Method

1.1 Recall
Epigraph: the epigraph, denoted epi(f), describes the set of input-output pairs that f can achieve, as well as
"anything above"

epi(f) := {(x, t) |x ∈ dom(f), f(x) ≤ t} (1)

Level sets: level sets are sets of points that achieve exactly a certain value for f . Precisely, the t-level set of f
is defined by

Lt(f) := {x ∈ dom(f) |f(x) = t} (2)

Sub-level Sets: t-sub-level set of f is defined by

St(f) := {x ∈ dom(f) |f(x) ≤ t} (3)

Notice the difference between definitions of epigraph and sub-level sets.
First Order Condition: for convex differentiable f

f(y) ≥ f(x) +∇f(x)T (y − x) ∀y ∈ dom(f) (4)

• the first order approximation of f at x is a global lower bound.

• ∇f(x) defines non-vertical supporting hyperplane to epi(f) at (x, f(x))

f(x) +∇f(x)(y − x) ≤ t ∀(y, t) ∈ epi(f) (5)

⇔
[
∇f(x)
−1

]( [y
t

]
−
[
x

f(x)

])
≤ 0 ∀(y, t) ∈ epi(f) (6)

• note that, y ∈ dom(f) as well, not y-axis. ∀(y, t) ∈ epi(f)

1.2 Why Subgradients?
Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex
function
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1.3 Subgradients
Subgradient: A vector g ∈ Rn is a subgradient of function f : Rn → R at x ∈ dom(f) if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom(f) (7)

Figure 1: At x1, the convex function f is differentiable, and g1 (which is the derivative of f at x1) is the
unique subgradient at x1. At the point x2, f is not differentiable. At this point, f has many subgradients: two
subgradients, g2 and g3 are shown.

Properties:

• The affine function (of y) f(x) + gT (y − x) is a global lower bound on f(y).

• Geometrically, g define non-vertical supporting hyperplane to epi(f) at (x, f(x))
or (g,−1) supports epi(f) at (x, f(x)).

f(x) + g(y − x) ≤ t ∀(y, t) ∈ epi(f) (8)

⇔
[
g
−1

]( [y
t

]
−
[
x

f(x)

])
≤ 0 ∀(y, t) ∈ epi(f) (9)

Figure 2: A vector g ∈ Rn is a subgradient of f at x if and only if (g,−1) defines a supporting hyperplane to
epi(f) at (x, f(x))

.

• If f is convex and differentiable, then ∇f(x) is a subgradient of f at x

• If f is not differentiable at x, there can be more than one subgradient of a function f at a point x.

1.4 Subdifferential
Subdifferential: the subdifferential ∂f(x) of f at x is the set of all subgradients:

∂f(x) = {g|f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom(f)} (10)

• A function f is called subdifferentiable at x if there exists at least one subgradient at x.

• A function f is called subdifferentiable if it is subdifferentiable at all x ∈ dom(f).

Properties:
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• The subdifferentiable ∂f(x) is always a closed convex set, even if f is not convex. This follows from the
fact that ∂f(x) is the intersection of an infinite set of halfspaces:

∂f(x) =
⋂

y∈dom(f)

{g|f(y) ≥ f(x) + gT (y − x)} (11)

• If f is continuous at x, then the subdifferential ∂f(x) is bounded. Choose some ε > 0 such that −∞ <
f ≤ f(y) ≤ f̄ < ∞ for all y ∈ Rn such that ||y − x||2 ≤ ε. If ∂f(x) is unbounded, then there is
a sequence gn ∈ ∂f(x) such that ||gn||2 → ∞. Taking the sequence yn = x + ε gn

||gn||2 , we find that
f(yn) ≥ f(x) + gTn (yn − x) = f(x) + ε||gn||2 →∞, which is a contradiction to f(yn) being bounded.

• If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}, i.e., its gradient is its only subgradient.
Conversely, if f is convex and ∂f(x) = {g}, then f is differentiable at x and g = ∇f(x).

• Existence of Subgradients: If f is convex and x ∈ int dom(f), then ∂f(x) is nonempty and bounded.

Proof.

• Monotonicity: subdifferential of a convex function is a monotone operator:

(u− v)T (y − x) ≥ 0 ∀x, y, u ∈ ∂f(x), v ∈ ∂f(y), (12)

which means, if y is greater than x, then subdifferential ∂f(y) ≥ ∂f(x).

Proof. Because u ∈ ∂f(x), we can get by definition

f(y) ≥ f(x) + uT (y − x)

and because v ∈ ∂f(y), we can get by definition

f(x) ≥ f(y) + vT (x− y)

Combining these two inequalities shows monotonicity

f(y) + f(x) ≥ f(x) + f(y) + uT (y − x) + vT (x− y)

(u− v)T (x− y) ≥ 0
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1.5 Examples
(Example 1) Absolute value f(x) = |x|

Figure 3: Consider f(x) = |x|. For x < 0 the subgradient is unique: ∂f(x) = {−1}. Similarly, for x > 0 we have
∂f(x) = 1. At x = 0 the subdifferential is defined by the inequality |y| ≥ g(y − 0) for all y, which is satisfied if
and only if g ∈ [−1, 1].Therefore, we have ∂f(0) = [−1, 1].

(Example 2) f(x) = max{f1(x), f2(x)} f1, f2 convex and differentiable

Figure 4: For f1(x) > f2(x), unique subgradient g = ∇f1(x); for f2(x) > f1(x), unique subgradient g = ∇f2(x);
for f1(x) = f2(x), subgradient g is any point on the line segment between ∇f1(x) and ∇f2(x). Note, g ∈ Rn,
when n = 1, g is scalar and line segment is just an interval; when n >1, for example, g ∈ R2, f1(x) = (1, 0) and
f2(x) = (2, 3), g is any point between line segment from point (1, 0) to (2, 3)
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(Example 3) Euclidean norm f(x) = ||x||2

Figure 5: For x 6= 0, ∂f(x) = x
||x||2 ; for x = 0, ∂f(x) = {g|||g||2 ≤ 1}

(Example 4) l1 norm f(x) = ||x||1

Figure 6: For xi 6= 0, unique ith component gi = sign(xi); for xi = 0, ith component gi is any element of [-1,1]

Questions:
If a function has subgradient at every point, can we prove the function is convex ?
Think about the supporting hyperplane theory and subgradient.

1.6 Connection to Convex Geometry
Now we try to derive subgradient from indication function of convex set.
Convex set C ⊂ Rn, consider indicator function IC : Rn → R,

IC(x) = I(x ∈ C) =

{
0 if x ∈ C
∞ if x /∈ C

(13)

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x

NC(x) = {g ∈ Rn : gTx ≥ gT y} for any y ∈ C (14)

Proof. By definition of subgradient g.

IC(y) ≥ IC(x) + gT (y − x) for all y (15)

• for y /∈ C, IC(y) =∞

• for y ∈ C, this means 0 ≥ gT (y − x)

For x /∈ C, IC(x) =∞. You cannot find any points y ∈ C to make inequality (15) satisfied. This is also a proof
of existence of subgradient that x ∈ int dom(f).

5



1.7 Optimality Condition
Subgradient Optimality Condition: A point x∗ is a minimizer of a function f (convex or not) if and only if f is
subdifferentiable at x∗ and 0 ∈ ∂f(x∗), i.e., g = 0 is a subgradient of f at x∗.

f(x∗) = min
x
f(x) ⇔ 0 ∈ ∂f(x∗) (16)

Proof. From the fact that f(x) ≥ f(x∗) for all x ∈ dom(f). Clearly, if f is subdifferentiable at x∗ with
0 ∈ ∂f(x∗) , then f(x) ≥ f(x∗) + 0T (x − x∗) = f(x∗) for all x. Let g = 0 being a subgradient means that for
all y

Remark: while this simple characterization of optimality via the subdifferential holds for nonconvex functions, it
is not particularly useful in that case, since we generally cannot find the subdifferential of a nonconvex function.

Theorem 1.1. For f convex and differentiable, the problem

min
x
f(x) subject to x ∈ C (17)

is solved at x if and only if
∇f(x)T (y − x) ≥ 0 for all y ∈ C (18)

Proof. First recast problem as
min
x
f(x) + IC(x) (19)

Now we apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x)). We get,

0 ∈ ∂(f(x) + IC(x))⇔ 0 ∈ {∂f(x)}+NC(x)

⇔ −∇f(x) ∈ NC(x) (because f is convex and differentiable)

⇔ −∇f(x)Tx ≥ −∇f(x)T y for all y ∈ C
⇔ ∇f(x)T (y − x) ≥ 0 for all y ∈ C

Example: Lasso Optimality Conditions. Given A ∈ Rn×p, b ∈ Rn, lasso problem can be parametrized as:

min
x∈Rp

1

2
||Ax− b||22 + λ||x||1 (20)

where λ ≥ 0. And we can get from subgradient optimality that:

0 ∈ ∂
(1

2
||Ax− b||22 + λ||x||1

)
(21)

⇔ 0 ∈ AT (Ax− b) + λ∂||x||1 (22)

⇔ AT (Ax− b) = −λv (23)

for some v ∈ ∂||x||1, i.e., (check the subgradient of l-1 norm on page 48)

vi ∈


{1} if xi > 0

{−1} if xi < 0, i = 1, ..., p

[−1, 1] if xi = 0

(24)

Write A1, A2, ..., Ap for columns of A. Then subgradient optimality of lasso becomes:{
ATi (Ax− b) = −λ sign(xi) if xi 6= 0

|ATi (Ax− b)| ≤ λ if xi = 0
(25)

Note: the subgradient optimality conditions do not directly lead to an expression for a lasso solution. However,
they do provide a way to check lasso optimality, to check if it has converged or not?? They are also helpful in
understanding the lasso estimator; e.g., if |ATi (Ax−b)| < λ, then xi = 0.(What this useful ????????????????????)

Example: Soft-Thresholding. Simplified Lasso problem with A = I:

min
x∈Rn

1

2
||x− b||22 + λ||x||1 (26)
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This we can solve directly using subgradient optimality. The closed form solution is x = Sλ(b), where Sλ is the
soft-thresholding operator: 

bi − λ if bi > λ

0 if − λ ≤ bi ≤ λ, i = 1, ..., n

bi + λ if bi < −λ
(27)

Check: for Lasso problem, subgradient optimality conditions are{
ATi (Ax− b) = −λ sign(xi) if xi 6= 0

|ATi (Ax− b)| ≤ λ if xi = 0

Now plug in x = Sλ(b) and check these are satisfied:

• when bi > λ, xi = bi − λ > 0, so xi − bi = −λ = −λ · 1

• when bi < −λ,xi = bi + λ < 0

• when |bi| ≤ λ, xi = 0, and |xi − bi| = |bi| ≤ λ

Figure 7: Soft-thresholding in one variable
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1.8 Subgradient Calculus
weak subgradient calculus: rules for finding one subgradient

• sufficient for most non-differentiable convex optimization algorithms

• if you can evaluate f(x), you can usually compute a subgradient

strong subgradient calculus: rules for finding ∂f(x) (all subgradients)

• some algorithms, optimality conditions, etc., need entire subdifferential

• can be quite complicated

1.8.1 Basic rules for convex functions

• Scaling: ∂(af) = a · ∂f provided a > 0 to assure convexity.

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine Composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

1.8.2 Finite pointwise maximum

If f(x) = maxi=1,...,m fi(x), then
∂f(x) = conv

(⋃
∂fi(x)

)
,

the convex hull of union of subdifferentials of all active functions at x, since subdifferentials are always convex.
Convex Hull: the convex hull of a set C, is the set of all convex combinations of points in C:

conv(C) = {θ1x1 + ...+ θkxk|xi ∈ C, θi ≥ 0, i = 1, ..., k, θ1 + ...+ θk = 1} (28)

The convex hull is always convex. It is the smallest convex set that contains C.

Example: l1 − norm. The l1-norm
f(x) = ||x||1 = |x1|+ ...+ |xn| (29)

is a nondifferentiable convex function of x. To find its subgradients, we note that f can expressed as the
maximum of 2n linear functions:

||x||1 = max{sTx|si ∈ {−1, 1}}, (30)

so we can apply the rules for the subgradient of the maximum. The first step is to identify an active function
sTx, i.e., find an s ∈ {−1,+1}n such that sTx = ||x||1. Since the function sTx is differentiable and has a unique
subgradient s. We can therefore take

si = gi =


+1 xi > 0

−1 xi < 0

−1 or + 1 xi = 0

(31)

The subdifferential is the convex hull of all subgradients that can be generated this way:

∂f(x) = {g|||g||∞ ≤ 1, gTx = ||x||1}WHY ??? (32)

1.8.3 Pointwise Supremum

We consider the extension to the supremum over an infinite number of functions,

f(x) = sup
α∈A

fα(x), (33)

where the functions fα are subdifferentiable.
Weak Result: assume maximum is attained, i.e., supα∈A fα(x) = maxα∈A fα(x), we can find a subgradient at
x.

• find any β for which fβ(x) = f(x)

• choose any g ∈ ∂fβ(x)
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(Partial) Strong Result: define I(x) = {α ∈ A|fα = f(x)}

∂f(x) ⊇ conv
( ⋃
α∈I(x)

∂fα(x)
)

(34)

If A is compact and fα continuous in α, then

∂f(x) = conv
( ⋃
α∈I(x)

∂fα(x)
)

(35)

Example1: maximum eigenvalue of a symmetric matrix. Recall, a real scalar λ is said to be an eigenvalue of
symmetric matrix S if there exist a non-zero vector u ∈ Rn such that

Su = λu,

where vector u is referred to as an eigenvector associated with the eigenvalue λ. The eigenvector u is said to be
normalized if ||u||2 = 1. In this case, we have

uTSu = uTλu = λuTu = λ||u||22 = λ

The interpretation of u is that it defines a direction along S behaves just like scalar multiplication. And we can
find the smallest and largest eigenvalues of S, denoted λmin and λmax respectively,

λmin = min
x
{uTSu|uTu = 1} (36)

λmax = max
x
{uTSu|uTu = 1} (37)

Now let f(x) = λmax(S(x)), where S(x) = S0+x1S1+ ...+xnSn with symmetric coefficients Si. We can express
f as the pointwise supremum of convex functions, (why convex ??)

f(x) = λmax(S(x)) = sup
||u||2=1

uTS(x)u (38)

Since sup means we may not find the maximum of this function by satisfying ||u||2 = 1, hence the index set A
is

A = {u ∈ Rn|||u||2 ≤ 1} (39)

here has infinite number of u, therefore we are solving the supremum over an infinite number of functions. Each
of the functions fu(x) = uTS(x)u is affine in x for fixed u, as can be easily seen from

uTS(x)u = uTS0u+ x1u
TS1u+ ...+ xnu

TSnu (40)

so it is differentiable with gradient

∇fu(x) = (uTS1u+ ...+ uTSnu) (41)

Hence to find a subgradient, we compute an eigenvector u with eigenvalue λmax, normalized to have unit norm,
and take

g = (uTS1u+ ...+ uTSnu) (42)

The index set in this example is A = {u|||u||2 = 1} is a compact set (closed and bounded). Therefore,

∂f(x) = conv{∇fu(x)|uTS(x)u = λmax(S(x)), ||u||2 = 1} (43)

Example2: maximum eigenvalue of a symmetric matrix,revisited. Let f(S) = λmax(S),where S is a n × n

symmetric matrix. Then as above, f(S) = λmax(S) = sup||u||2=1 u
TSu, but we note that uTSu = Trace(SuuT ),

so that each of the functions fu(A) = uTSu is linear in S with gradient ∇fu(A) = uuT . Then using an identical
argument to that above, we find that

∂f(S) = conv{uuT |||u||2 = 1, uTSu = λmax(S)} = conv{uuT = 1, Su = λmax(S)u} (44)
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1.8.4 Minimization Over Some Variables

Now, we consider the function with the form

f(x) = inf
y
H(x, y) (45)

where H(x, y) is subdifferentiable and jointly convex in x ∈ Rn and y ∈ Rn. Suppose that the infimum over y
in the definition of f(x) is attained on the set Yx ⊂ Rm (where Yx 6= 0), so that H(x, y) = f(x) for y ∈ Yx. By
definition, a vector g ∈ Rn is a subgradient of f is and if

f(x′) ≥ f(x) + gT (x′ − x) = H(x, y) + gT (x′ − x) (46)

for all x′ ∈ Rn and any y ∈ Yx. This is equivalent to

H(x′, y′) ≥ H(x, y) + gT (x′ − x) = H(x, y) +

[
g
0

]( [
x′

y′

]
−
[
x
y

])
(47)

for all (x′, y′) ∈ Rn ×Rm and x, y ∈ Yx.

Weak Result: to find a subgradient at x,

• find y that minimize H(x, y)

• find subgradient (g, 0) ∈ ∂H(x, y)

In particular we have the result that

∂f(x) = {g ∈ Rn|(g, 0) ∈ ∂H(x, y) for some y ∈ Yx} (48)

Example:Euclidean Distance to Convex Set. Now we are trying to find the a subgradient of

f(x) = inf
y∈C
||x− y||2 (49)

where C is a closed convex set. To find a subgradient at x, we can conclude the solution as following,

• if f(x) = 0, that is x ∈ C and f(x) is the minimum of ||x− y||2, thus g = 0

• if f(x) > 0, find projection y = P (x) on C

g =
1

||x− y||2
(x− y) =

1

||x− P (x)||2
(x− P (x)) (WHY ???????) (50)

The gradient points in the direction of the greatest rate of increase of the function and its magnitude is the
slope of the graph in that direction .

1.8.5 Optimal Value Function of a Convex Optimization Problem

Suppose f : Rm × Rp → R is defined as the optimal value of a convex optimization problem in standard form,
with z ∈ Rn as optimization variable,

minimize f0(z)

subject to fi(z) ≤ xi, i = 1, ...,m and Az = y (51)

In other words, f(x, y) = infzH(x, y, z) where

H(x, y, z) =

{
f0(z) fi(z) ≤ xi, i = 1, ...,m,Az = y

+∞ otherwise
(52)

which is jointly convex in x, y, z. Subgradients of f can be related to the dual problem of (43) as follows.
Suppose we are interested in subdifferentiating f at (x, y). We can express the dual problem of (43) as

maximize g(λ)− xTλ− yT v
subject to λ � 0 (53)

where

g(λ) = inf
z

(
f0(z) +

m∑
i=1

λifi(z) + vTAz
)

(54)
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1.9 Directional Derivatives and Subgradients
Directional derivative of f at x in the direction v is

f ′(x; v) = lim
α→0

f(x+ tv)− f(x)

t
(55)

(56)

This quantity always exists for convex f , though it may be +∞ or −∞. To see the existence of the limit, we
use that the ratio

f(x+ tv)− f(x)

t
(57)

is non-decreasing in t. For 0 < t1 ≤ t2, we have 0 ≤ t1/t2 ≤ 1, and

f(x+ t1v)− f(x)

t1
=
f( t1t2 (x+ t2v) + (1− t1

t2
)x)− f(x)

t1
(58)

(convex definition: f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)) (59)

≤
t1
t2
f(x+ t2v)

t1
+

(1− t1
t2

)f(x)− f(x)

t1
(60)

=
f(x+ t2v)− f(x)

t2
(61)

so the limit in the definition of f ′(x; v) exists.
Properties: Several properties of directional derivative f ′(x; v)

• it is convex in v, and if f is finite in a neighborhood of x, then f ′(x; v) exists.
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