# Note on Optimization Methods 

Chunpai Wang

October 2015

## 1 Subgradient Method

### 1.1 Recall

Epigraph: the epigraph, denoted epi(f), describes the set of input-output pairs that $f$ can achieve, as well as "anything above"

$$
\begin{equation*}
\operatorname{epi}(f):=\{(x, t) \mid x \in \operatorname{dom}(f), f(x) \leq t\} \tag{1}
\end{equation*}
$$

Level sets: level sets are sets of points that achieve exactly a certain value for $f$. Precisely, the $t$-level set of $f$ is defined by

$$
\begin{equation*}
L_{t}(f):=\{x \in \operatorname{dom}(f) \mid f(x)=t\} \tag{2}
\end{equation*}
$$

Sub-level Sets: $t$-sub-level set of $f$ is defined by

$$
\begin{equation*}
S_{t}(f):=\{x \in \operatorname{dom}(f) \mid f(x) \leq t\} \tag{3}
\end{equation*}
$$

Notice the difference between definitions of epigraph and sub-level sets.
First Order Condition: for convex differentiable $f$

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \forall y \in \operatorname{dom}(f) \tag{4}
\end{equation*}
$$

- the first order approximation of $f$ at $x$ is a global lower bound.
- $\nabla f(x)$ defines non-vertical supporting hyperplane to epi(f) at $(x, f(x))$

$$
\begin{gather*}
f(x)+\nabla f(x)(y-x) \leq t \quad \forall(y, t) \in \operatorname{epi}(f)  \tag{5}\\
\Leftrightarrow\left[\begin{array}{c}
\nabla f(x) \\
-1
\end{array}\right]\left(\left[\begin{array}{l}
y \\
t
\end{array}\right]-\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]\right) \leq 0 \quad \forall(y, t) \in \operatorname{epi}(f) \tag{6}
\end{gather*}
$$

- note that, $y \in \operatorname{dom}(f)$ as well, not $y$-axis. $\forall(y, t) \in e p i(f)$


### 1.2 Why Subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function


### 1.3 Subgradients

Subgradient: A vector $g \in \mathbb{R}^{n}$ is a subgradient of function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at $x \in \operatorname{dom}(f)$ if

$$
\begin{equation*}
f(y) \geq f(x)+g^{T}(y-x) \quad \forall y \in \operatorname{dom}(f) \tag{7}
\end{equation*}
$$

$$
f\left(x_{1}\right)+g_{1}^{T}\left(x-x_{1}\right)
$$

Figure 1: At $x_{1}$, the convex function $f$ is differentiable, and $g_{1}$ (which is the derivative of $f$ at $x_{1}$ ) is the unique subgradient at $x_{1}$. At the point $x_{2}, f$ is not differentiable. At this point, f has many subgradients: two subgradients, $g_{2}$ and $g_{3}$ are shown.

## Properties:

- The affine function (of $y) f(x)+g^{T}(y-x)$ is a global lower bound on $f(y)$.
- Geometrically, $g$ define non-vertical supporting hyperplane to epi(f) at $(x, f(x))$ or $(g,-1)$ supports epi(f) at $(x, f(x))$.

$$
\begin{gather*}
f(x)+g(y-x) \leq t \quad \forall(y, t) \in e p i(f)  \tag{8}\\
\Leftrightarrow\left[\begin{array}{c}
g \\
-1
\end{array}\right]\left(\left[\begin{array}{c}
y \\
t
\end{array}\right]-\left[\begin{array}{c}
x \\
f(x)
\end{array}\right]\right) \leq 0 \quad \forall(y, t) \in e p i(f) \tag{9}
\end{gather*}
$$



Figure 2: A vector $g \in \mathbb{R}^{n}$ is a subgradient of $f$ at $x$ if and only if $(g,-1)$ defines a supporting hyperplane to $e p i(f)$ at $(x, f(x))$

- If $f$ is convex and differentiable, then $\nabla f(x)$ is a subgradient of $f$ at $x$
- If $f$ is not differentiable at $x$, there can be more than one subgradient of a function $f$ at a point $x$.


### 1.4 Subdifferential

Subdifferential: the subdifferential $\partial f(x)$ of $f$ at $x$ is the set of all subgradients:

$$
\begin{equation*}
\partial f(x)=\left\{g \mid f(y) \geq f(x)+g^{T}(y-x) \quad \forall y \in \operatorname{dom}(f)\right\} \tag{10}
\end{equation*}
$$

- A function $f$ is called subdifferentiable at $x$ if there exists at least one subgradient at $x$.
- A function $f$ is called subdifferentiable if it is subdifferentiable at all $x \in \operatorname{dom}(f)$.
$\underline{\text { Properties: }}$
- The subdifferentiable $\partial f(x)$ is always a closed convex set, even if $f$ is not convex. This follows from the fact that $\partial f(x)$ is the intersection of an infinite set of halfspaces:

$$
\begin{equation*}
\partial f(x)=\bigcap_{y \in \operatorname{dom}(f)}\left\{g \mid f(y) \geq f(x)+g^{T}(y-x)\right\} \tag{11}
\end{equation*}
$$

- If $f$ is continuous at $x$, then the subdifferential $\partial f(x)$ is bounded. Choose some $\epsilon>0$ such that $-\infty<$ $\underline{f} \leq f(y) \leq \bar{f}<\infty$ for all $y \in \mathbb{R}^{n}$ such that $\|y-x\|_{2} \leq \epsilon$. If $\partial f(x)$ is unbounded, then there is $\bar{a}$ sequence $g_{n} \in \partial f(x)$ such that $\left\|g_{n}\right\|_{2} \rightarrow \infty$. Taking the sequence $y_{n}=x+\epsilon \frac{g_{n}}{\left\|g_{n}\right\|_{2}}$, we find that $f\left(y_{n}\right) \geq f(x)+g_{n}^{T}\left(y_{n}-x\right)=f(x)+\epsilon\left\|g_{n}\right\|_{2} \rightarrow \infty$, which is a contradiction to $f\left(y_{n}\right)$ being bounded.
- If $f$ is convex and differentiable at $x$, then $\partial f(x)=\{\nabla f(x)\}$, i.e., its gradient is its only subgradient. Conversely, if $f$ is convex and $\partial f(x)=\{g\}$, then $f$ is differentiable at $x$ and $g=\nabla f(x)$.
- Existence of Subgradients: If $f$ is convex and $x \in \operatorname{int} \operatorname{dom}(f)$, then $\partial f(x)$ is nonempty and bounded.

Proof.

- Monotonicity: subdifferential of a convex function is a monotone operator:

$$
\begin{equation*}
(u-v)^{T}(y-x) \geq 0 \quad \forall x, y, \quad u \in \partial f(x), v \in \partial f(y) \tag{12}
\end{equation*}
$$

which means, if $y$ is greater than $x$, then subdifferential $\partial f(y) \geq \partial f(x)$.
Proof. Because $u \in \partial f(x)$, we can get by definition

$$
f(y) \geq f(x)+u^{T}(y-x)
$$

and because $v \in \partial f(y)$, we can get by definition

$$
f(x) \geq f(y)+v^{T}(x-y)
$$

Combining these two inequalities shows monotonicity

$$
\begin{gathered}
f(y)+f(x) \geq f(x)+f(y)+u^{T}(y-x)+v^{T}(x-y) \\
(u-v)^{T}(x-y) \geq 0
\end{gathered}
$$

### 1.5 Examples

(Example 1) Absolute value $f(x)=|x|$



Figure 3: Consider $f(x)=|x|$. For $x<0$ the subgradient is unique: $\partial f(x)=\{-1\}$. Similarly, for $x>0$ we have $\partial f(x)=1$. At $x=0$ the subdifferential is defined by the inequality $|y| \geq g(y-0)$ for all $y$, which is satisfied if and only if $g \in[-1,1]$.Therefore, we have $\partial f(0)=[-1,1]$.
(Example 2) $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\} \quad f_{1}, f_{2}$ convex and differentiable


Figure 4: For $f_{1}(x)>f_{2}(x)$, unique subgradient $g=\nabla f_{1}(x)$; for $f_{2}(x)>f_{1}(x)$, unique subgradient $g=\nabla f_{2}(x)$; for $f_{1}(x)=f_{2}(x)$, subgradient $g$ is any point on the line segment between $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$. Note, $g \in \mathbb{R}^{n}$, when $n=1, g$ is scalar and line segment is just an interval; when $\mathrm{n}>1$, for example, $g \in \mathbb{R}^{2}, f_{1}(x)=(1,0)$ and $f_{2}(x)=(2,3), \mathrm{g}$ is any point between line segment from point $(1,0)$ to $(2,3)$
(Example 3) Euclidean norm $f(x)=\|x\|_{2}$


Figure 5: For $x \neq 0, \partial f(x)=\frac{x}{\|x\|_{2}} ; \quad$ for $x=0, \partial f(x)=\left\{g\| \| g \|_{2} \leq 1\right\}$
(Example 4) $l_{1}$ norm $f(x)=\|x\|_{1}$


Figure 6: For $x_{i} \neq 0$, unique $i^{\text {th }}$ component $g_{i}=\operatorname{sign}\left(x_{i}\right)$; for $x_{i}=0, i^{\text {th }}$ component $g_{i}$ is any element of $[-1,1]$

## Questions:

If a function has subgradient at every point, can we prove the function is convex ?
Think about the supporting hyperplane theory and subgradient.

### 1.6 Connection to Convex Geometry

Now we try to derive subgradient from indication function of convex set.
Convex set $C \subset \mathbb{R}^{n}$, consider indicator function $I_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
I_{C}(x)=I(x \in C)= \begin{cases}0 & \text { if } x \in C  \tag{13}\\ \infty & \text { if } x \notin C\end{cases}
$$

For $x \in C, \partial I_{C}(x)=N_{C}(x)$, the normal cone of $C$ at $x$

$$
\begin{equation*}
N_{C}(x)=\left\{g \in R^{n}: g^{T} x \geq g^{T} y\right\} \text { for any } y \in C \tag{14}
\end{equation*}
$$

Proof. By definition of subgradient $g$.

$$
\begin{equation*}
I_{C}(y) \geq I_{C}(x)+g^{T}(y-x) \text { for all } y \tag{15}
\end{equation*}
$$

- for $y \notin C, I_{C}(y)=\infty$
- for $y \in C$, this means $0 \geq g^{T}(y-x)$

For $x \notin C, I_{C}(x)=\infty$. You cannot find any points $y \in C$ to make inequality (15) satisfied. This is also a proof of existence of subgradient that $x \in \operatorname{int} \operatorname{dom}(f)$.

### 1.7 Optimality Condition

Subgradient Optimality Condition: A point $x^{*}$ is a minimizer of a function $f$ (convex or not) if and only if $f$ is subdifferentiable at $x^{*}$ and $0 \in \partial f\left(x^{*}\right)$, i.e., $g=0$ is a subgradient of $f$ at $x^{*}$.

$$
\begin{equation*}
f\left(x^{*}\right)=\min _{x} f(x) \Leftrightarrow 0 \in \partial f\left(x^{*}\right) \tag{16}
\end{equation*}
$$

Proof. From the fact that $f(x) \geq f\left(x^{*}\right)$ for all $x \in \operatorname{dom}(f)$. Clearly, if $f$ is subdifferentiable at $x^{*}$ with $0 \in \partial f\left(x^{*}\right)$, then $f(x) \geq f\left(x^{*}\right)+0^{T}\left(x-x^{*}\right)=f\left(x^{*}\right)$ for all $x$. Let $g=0$ being a subgradient means that for all $y$

Remark: while this simple characterization of optimality via the subdifferential holds for nonconvex functions, it is not particularly useful in that case, since we generally cannot find the subdifferential of a nonconvex function.

Theorem 1.1. For $f$ convex and differentiable, the problem

$$
\begin{equation*}
\min _{x} f(x) \text { subject to } x \in C \tag{17}
\end{equation*}
$$

is solved at $x$ if and only if

$$
\begin{equation*}
\nabla f(x)^{T}(y-x) \geq 0 \quad \text { for all } y \in C \tag{18}
\end{equation*}
$$

Proof. First recast problem as

$$
\begin{equation*}
\min _{x} f(x)+I_{C}(x) \tag{19}
\end{equation*}
$$

Now we apply subgradient optimality: $0 \in \partial\left(f(x)+I_{C}(x)\right)$. We get,

$$
\begin{aligned}
0 \in \partial\left(f(x)+I_{C}(x)\right) & \Leftrightarrow 0 \in\{\partial f(x)\}+N_{C}(x) \\
& \Leftrightarrow-\nabla f(x) \in N_{C}(x) \quad \text { (because } f \text { is convex and differentiable) } \\
& \Leftrightarrow-\nabla f(x)^{T} x \geq-\nabla f(x)^{T} y \text { for all } y \in C \\
& \Leftrightarrow \nabla f(x)^{T}(y-x) \geq 0 \text { for all } y \in C
\end{aligned}
$$

Example: Lasso Optimality Conditions. Given $A \in \mathbb{R}^{n \times p}, b \in \mathbb{R}^{n}$, lasso problem can be parametrized as:

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}} \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \tag{20}
\end{equation*}
$$

where $\lambda \geq 0$. And we can get from subgradient optimality that:

$$
\begin{align*}
0 & \in \partial\left(\frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}\right)  \tag{21}\\
& \Leftrightarrow 0 \in A^{T}(A x-b)+\lambda \partial\|x\|_{1}  \tag{22}\\
& \Leftrightarrow A^{T}(A x-b)=-\lambda v \tag{23}
\end{align*}
$$

for some $v \in \partial\|x\|_{1}$, i.e., (check the subgradient of l-1 norm on page 48)

$$
v_{i} \in \begin{cases}\{1\} & \text { if } x_{i}>0  \tag{24}\\ \{-1\} & \text { if } x_{i}<0, i=1, \ldots, p \\ {[-1,1]} & \text { if } x_{i}=0\end{cases}
$$

Write $A_{1}, A_{2}, \ldots, A_{p}$ for columns of $A$. Then subgradient optimality of lasso becomes:

$$
\begin{cases}A_{i}^{T}(A x-b)=-\lambda \operatorname{sign}\left(x_{i}\right) & \text { if } \quad x_{i} \neq 0  \tag{25}\\ \left|A_{i}^{T}(A x-b)\right| \leq \lambda & \text { if } x_{i}=0\end{cases}
$$

Note: the subgradient optimality conditions do not directly lead to an expression for a lasso solution. However, they do provide a way to check lasso optimality, to check if it has converged or not?? They are also helpful in understanding the lasso estimator; e.g., if $\left|A_{i}^{T}(A x-b)\right|<\lambda$, then $x_{i}=0$.(What this useful ????????????????????)


$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-b\|_{2}^{2}+\lambda\|x\|_{1} \tag{26}
\end{equation*}
$$

This we can solve directly using subgradient optimality. The closed form solution is $x=S_{\lambda}(b)$, where $S_{\lambda}$ is the soft-thresholding operator:

$$
\begin{cases}b_{i}-\lambda & \text { if } \quad b_{i}>\lambda  \tag{27}\\ 0 & \text { if }-\lambda \leq b_{i} \leq \lambda, i=1, \ldots, n \\ b_{i}+\lambda & \text { if } \quad b_{i}<-\lambda\end{cases}
$$

Check: for Lasso problem, subgradient optimality conditions are

$$
\begin{cases}A_{i}^{T}(A x-b)=-\lambda \operatorname{sign}\left(x_{i}\right) & \text { if } x_{i} \neq 0 \\ \left|A_{i}^{T}(A x-b)\right| \leq \lambda & \text { if } \quad x_{i}=0\end{cases}
$$

Now plug in $x=S_{\lambda}(b)$ and check these are satisfied:

- when $b_{i}>\lambda, x_{i}=b_{i}-\lambda>0$, so $x_{i}-b_{i}=-\lambda=-\lambda \cdot 1$
- when $b_{i}<-\lambda, x_{i}=b_{i}+\lambda<0$
- when $\left|b_{i}\right| \leq \lambda, x_{i}=0$, and $\left|x_{i}-b_{i}\right|=\left|b_{i}\right| \leq \lambda$


Figure 7: Soft-thresholding in one variable

### 1.8 Subgradient Calculus

weak subgradient calculus: rules for finding one subgradient

- sufficient for most non-differentiable convex optimization algorithms
- if you can evaluate $f(x)$, you can usually compute a subgradient
$\underline{\text { strong subgradient calculus: rules for finding } \partial f(x) \text { (all subgradients) }}$
- some algorithms, optimality conditions, etc., need entire subdifferential
- can be quite complicated


### 1.8.1 Basic rules for convex functions

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$ to assure convexity.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$
- Affine Composition: if $g(x)=f(A x+b)$, then

$$
\partial g(x)=A^{T} \partial f(A x+b)
$$

### 1.8.2 Finite pointwise maximum

If $f(x)=\max _{i=1, \ldots, m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv}\left(\bigcup \partial f_{i}(x)\right)
$$

the convex hull of union of subdifferentials of all active functions at $x$, since subdifferentials are always convex. Convex Hull: the convex hull of a set $C$, is the set of all convex combinations of points in C:

$$
\begin{equation*}
\operatorname{conv}(C)=\left\{\theta_{1} x_{1}+\ldots+\theta_{k} x_{k} \mid x_{i} \in C, \theta_{i} \geq 0, i=1, \ldots, k, \theta_{1}+\ldots+\theta_{k}=1\right\} \tag{28}
\end{equation*}
$$

The convex hull is always convex. It is the smallest convex set that contains $C$.
Example: $l_{1}-$ norm. The $l_{1}$-norm

$$
\begin{equation*}
f(x)=\left|\left|x \|_{1}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|\right.\right. \tag{29}
\end{equation*}
$$

is a nondifferentiable convex function of $x$. To find its subgradients, we note that $f$ can expressed as the maximum of $2^{n}$ linear functions:

$$
\begin{equation*}
\|x\|_{1}=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\} \tag{30}
\end{equation*}
$$

so we can apply the rules for the subgradient of the maximum. The first step is to identify an active function $s^{T} x$, i.e., find an $s \in\{-1,+1\}^{n}$ such that $s^{T} x=\|x\|_{1}$. Since the function $s^{T} x$ is differentiable and has a unique subgradient $s$. We can therefore take

$$
s_{i}=g_{i}= \begin{cases}+1 & x_{i}>0  \tag{31}\\ -1 & x_{i}<0 \\ -1 \text { or }+1 & x_{i}=0\end{cases}
$$

The subdifferential is the convex hull of all subgradients that can be generated this way:

$$
\begin{equation*}
\partial f(x)=\left\{g\|\mid g\|_{\infty} \leq 1, g^{T} x=\|x\|_{1}\right\} W H Y ? ? ? \tag{32}
\end{equation*}
$$

### 1.8.3 Pointwise Supremum

We consider the extension to the supremum over an infinite number of functions,

$$
\begin{equation*}
f(x)=\sup _{\alpha \in A} f_{\alpha}(x), \tag{33}
\end{equation*}
$$

where the functions $f_{\alpha}$ are subdifferentiable.
Weak Result: assume maximum is attained, i.e., $\sup _{\alpha \in A} f_{\alpha}(x)=\max _{\alpha \in A} f_{\alpha}(x)$, we can find a subgradient at $x$.

- find any $\beta$ for which $f_{\beta}(x)=f(x)$
- choose any $g \in \partial f_{\beta}(x)$
(Partial) Strong Result: define $I(x)=\left\{\alpha \in A \mid f_{\alpha}=f(x)\right\}$

$$
\begin{equation*}
\partial f(x) \supseteq \operatorname{conv}\left(\bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x)\right) \tag{34}
\end{equation*}
$$

If $A$ is compact and $f_{\alpha}$ continuous in $\alpha$, then

$$
\begin{equation*}
\partial f(x)=\operatorname{conv}\left(\bigcup_{\alpha \in I(x)} \partial f_{\alpha}(x)\right) \tag{35}
\end{equation*}
$$

Example1: maximum eigenvalue of a symmetric matrix. Recall, a real scalar $\lambda$ is said to be an eigenvalue of symmetric matrix $S$ if there exist a non-zero vector $u \in \mathbb{R}^{n}$ such that

$$
S u=\lambda u,
$$

where vector $u$ is referred to as an eigenvector associated with the eigenvalue $\lambda$. The eigenvector $u$ is said to be normalized if $\|u\|_{2}=1$. In this case, we have

$$
u^{T} S u=u^{T} \lambda u=\lambda u^{T} u=\lambda\|u\|_{2}^{2}=\lambda
$$

The interpretation of $u$ is that it defines a direction along $S$ behaves just like scalar multiplication. And we can find the smallest and largest eigenvalues of $S$, denoted $\lambda_{\text {min }}$ and $\lambda_{\text {max }}$ respectively,

$$
\begin{align*}
& \lambda_{\min }=\min _{x}\left\{u^{T} S u \mid u^{T} u=1\right\}  \tag{36}\\
& \lambda_{\max }=\max _{x}\left\{u^{T} S u \mid u^{T} u=1\right\} \tag{37}
\end{align*}
$$

Now let $f(x)=\lambda_{\max }(S(x))$, where $S(x)=S_{0}+x_{1} S_{1}+\ldots+x_{n} S_{n}$ with symmetric coefficients $S_{i}$. We can express $f$ as the pointwise supremum of convex functions, (why convex ??)

$$
\begin{equation*}
f(x)=\lambda_{\max }(S(x))=\sup _{\|u\|_{2}=1} u^{T} S(x) u \tag{38}
\end{equation*}
$$

Since sup means we may not find the maximum of this function by satisfying $\|u\|_{2}=1$, hence the index set $A$ is

$$
\begin{equation*}
A=\left\{u \in \mathbb{R}^{n}\| \| u \|_{2} \leq 1\right\} \tag{39}
\end{equation*}
$$

here has infinite number of $u$, therefore we are solving the supremum over an infinite number of functions. Each of the functions $f_{u}(x)=u^{T} S(x) u$ is affine in $x$ for fixed $u$, as can be easily seen from

$$
\begin{equation*}
u^{T} S(x) u=u^{T} S_{0} u+x_{1} u^{T} S_{1} u+\ldots+x_{n} u^{T} S_{n} u \tag{40}
\end{equation*}
$$

so it is differentiable with gradient

$$
\begin{equation*}
\nabla f_{u}(x)=\left(u^{T} S_{1} u+\ldots+u^{T} S_{n} u\right) \tag{41}
\end{equation*}
$$

Hence to find a subgradient, we compute an eigenvector $u$ with eigenvalue $\lambda_{\max }$, normalized to have unit norm, and take

$$
\begin{equation*}
g=\left(u^{T} S_{1} u+\ldots+u^{T} S_{n} u\right) \tag{42}
\end{equation*}
$$

The index set in this example is $A=\left\{u\| \| u \|_{2}=1\right\}$ is a compact set (closed and bounded). Therefore,

$$
\begin{equation*}
\partial f(x)=\operatorname{conv}\left\{\nabla f_{u}(x) \mid u^{T} S(x) u=\lambda_{\max }(S(x)),\|u\|_{2}=1\right\} \tag{43}
\end{equation*}
$$

Example2: maximum eigenvalue of a symmetric matrix, revisited. Let $f(S)=\lambda_{\max }(S)$, where $S$ is a $n \times n$ symmetric matrix. Then as above, $f(S)=\lambda_{\max }(S)=\sup _{\|u\|_{2}=1} u^{T} S u$, but we note that $u^{T} S u=\operatorname{Trace}\left(S u u^{T}\right)$, so that each of the functions $f_{u}(A)=u^{T} S u$ is linear in $S$ with gradient $\nabla f_{u}(A)=u u^{T}$. Then using an identical argument to that above, we find that

$$
\begin{equation*}
\partial f(S)=\operatorname{conv}\left\{u u^{T}\| \| u \|_{2}=1, u^{T} S u=\lambda_{\max }(S)\right\}=\operatorname{conv}\left\{u u^{T}=1, S u=\lambda_{\max }(S) u\right\} \tag{44}
\end{equation*}
$$

### 1.8.4 Minimization Over Some Variables

Now, we consider the function with the form

$$
\begin{equation*}
f(x)=\inf _{y} H(x, y) \tag{45}
\end{equation*}
$$

where $H(x, y)$ is subdifferentiable and jointly convex in $x \in R^{n}$ and $y \in R^{n}$. Suppose that the infimum over $y$ in the definition of $f(x)$ is attained on the set $Y_{x} \subset \mathbb{R}^{m}$ (where $Y_{x} \neq 0$ ), so that $H(x, y)=f(x)$ for $y \in Y_{x}$. By definition, a vector $g \in \mathbb{R}^{n}$ is a subgradient of $f$ is and if

$$
\begin{equation*}
f\left(x^{\prime}\right) \geq f(x)+g^{T}\left(x^{\prime}-x\right)=H(x, y)+g^{T}\left(x^{\prime}-x\right) \tag{46}
\end{equation*}
$$

for all $x^{\prime} \in \mathbb{R}^{n}$ and any $y \in Y_{x}$. This is equivalent to

$$
H\left(x^{\prime}, y^{\prime}\right) \geq H(x, y)+g^{T}\left(x^{\prime}-x\right)=H(x, y)+\left[\begin{array}{l}
g  \tag{47}\\
0
\end{array}\right]\left(\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]-\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)
$$

for all $\left(x^{\prime}, y^{\prime}\right) \in R^{n} \times R^{m}$ and $x, y \in Y_{x}$.

Weak Result: to find a subgradient at $x$,

- find $y$ that minimize $H(x, y)$
- find subgradient $(g, 0) \in \partial H(x, y)$

In particular we have the result that

$$
\begin{equation*}
\partial f(x)=\left\{g \in \mathbb{R}^{n} \mid(g, 0) \in \partial H(x, y) \text { for some } y \in Y_{x}\right\} \tag{48}
\end{equation*}
$$

Example:Euclidean Distance to Convex Set. Now we are trying to find the a subgradient of

$$
\begin{equation*}
f(x)=\inf _{y \in C}\|x-y\|_{2} \tag{49}
\end{equation*}
$$

where $C$ is a closed convex set. To find a subgradient at x, we can conclude the solution as following,

- if $f(x)=0$, that is $x \in C$ and $f(x)$ is the minimum of $\|x-y\|_{2}$, thus $g=0$
- if $f(x)>0$, find projection $y=P(x)$ on $C$

$$
\begin{equation*}
g=\frac{1}{\|x-y\|_{2}}(x-y)=\frac{1}{\|x-P(x)\|_{2}}(x-P(x)) \quad(W H Y ? ? ? ? ? ? ?) \tag{50}
\end{equation*}
$$

The gradient points in the direction of the greatest rate of increase of the function and its magnitude is the slope of the graph in that direction .

### 1.8.5 Optimal Value Function of a Convex Optimization Problem

Suppose $f: \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is defined as the optimal value of a convex optimization problem in standard form, with $z \in \mathbb{R}^{n}$ as optimization variable,

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(z) \\
\text { subject to } & f_{i}(z) \leq x_{i}, \quad i=1, \ldots, m \text { and } A z=y \tag{51}
\end{array}
$$

In other words, $f(x, y)=\inf _{z} H(x, y, z)$ where

$$
H(x, y, z)= \begin{cases}f_{0}(z) & f_{i}(z) \leq x_{i}, i=1, \ldots, m, A z=y  \tag{52}\\ +\infty & \text { otherwise }\end{cases}
$$

which is jointly convex in $x, y, z$. Subgradients of $f$ can be related to the dual problem of (43) as follows. Suppose we are interested in subdifferentiating $f$ at $(x, y)$. We can express the dual problem of (43) as

$$
\begin{array}{ll}
\text { maximize } & g(\lambda)-x^{T} \lambda-y^{T} v \\
\text { subject to } & \lambda \succeq 0 \tag{53}
\end{array}
$$

where

$$
\begin{equation*}
g(\lambda)=\inf _{z}\left(f_{0}(z)+\sum_{i=1}^{m} \lambda_{i} f_{i}(z)+v^{T} A z\right) \tag{54}
\end{equation*}
$$

### 1.9 Directional Derivatives and Subgradients

Directional derivative of $f$ at $x$ in the direction $v$ is

$$
\begin{equation*}
f^{\prime}(x ; v)=\lim _{\alpha \rightarrow 0} \frac{f(x+t v)-f(x)}{t} \tag{55}
\end{equation*}
$$

This quantity always exists for convex $f$, though it may be $+\infty$ or $-\infty$. To see the existence of the limit, we use that the ratio

$$
\begin{equation*}
\frac{f(x+t v)-f(x)}{t} \tag{57}
\end{equation*}
$$

is non-decreasing in $t$. For $0<t_{1} \leq t_{2}$, we have $0 \leq t_{1} / t_{2} \leq 1$, and

$$
\begin{align*}
\frac{f\left(x+t_{1} v\right)-f(x)}{t_{1}} & =\frac{f\left(\frac{t_{1}}{t_{2}}\left(x+t_{2} v\right)+\left(1-\frac{t_{1}}{t_{2}}\right) x\right)-f(x)}{t_{1}}  \tag{58}\\
& \text { (convex definition: } \left.f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)\right)  \tag{59}\\
& \leq \frac{\frac{t_{1}}{t_{2}} f\left(x+t_{2} v\right)}{t_{1}}+\frac{\left(1-\frac{t_{1}}{t_{2}}\right) f(x)-f(x)}{t_{1}}  \tag{60}\\
& =\frac{f\left(x+t_{2} v\right)-f(x)}{t_{2}} \tag{61}
\end{align*}
$$

so the limit in the definition of $f^{\prime}(x ; v)$ exists.
$\underline{\text { Properties: Several properties of directional derivative } f^{\prime}(x ; v)}$

- it is convex in $v$, and if $f$ is finite in a neighborhood of $x$, then $f^{\prime}(x ; v)$ exists.

