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Goal of Inference:

• Computing the likelihood of observed data (in models with latent variables)

• Computing the marginal distribution over a given subset of nodes in the model

• Computing the conditional distribution over a subsets of nodes given a disjoint subset of
nodes

• Computing a mode of the density (for the above distributions)

Approximate Inferences:

• Variational Inference

– Mean field approximation
– Expectation propagation
– Variational 2nd-order Taylor approximation

• Markov Chain Monte Carlo

– Gibbs sampling
– Stochastic gradient MCMC methods

Given a set of i.i.d. observed data X = {x1, , , , ., xN}, a set of latent variables and parameters
Y = {y1, ..., yN}, and the joint distribution P (X,Y ), the goal of variational inference is to find an
approximation for the posterior distribution P (Y |X) as well as for the model evidence P (X).

1 KL-Divergence
We would like to find a distribution q(Y ) to approximate the p(Y |X) that minimize the KL-
divergence

KL(q(Y )‖p(Y |X)) =

∫
q(Y ) log

q(Y )

p(Y |X)
dY (1)

However, it is intractable to compute the p(Y |X) for each possible value of variable Y , because it
requires to compute the normalization term p(X) so that we can get

p(Y |X) =
p(X,Y )

p(X)
(2)

To avoid this, we change to minimize the KL-divergence between q(Y ) and p(X,Y )

KL(q(Y )‖p(X,Y )) = KL(q(Y )‖p(Y |X)p(X)) (3)

=

∫
q(Y ) log

q(Y )

p(Y |X)p(X)
dY (4)

=

∫
q(Y )

[
log

q(Y )

p(Y |X)
− log p(X)

]
dY (5)

=

∫
q(Y ) log

q(Y )

p(Y |X)
dY − log p(X) (6)

= KL(q(Y ‖p(Y |X)))− log p(X) (7)
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We can see that to minimize theKL(q(Y )‖p(X,Y )) is same as to maximize the−KL(q(Y )‖p(X,Y ))

−KL(q(Y )‖p(X,Y )) = −
∫
q(Y ) log

q(Y )

p(X,Y )
dY (8)

=

∫
q(Y ) log

p(X,Y )

q(Y )
dY (9)

= Eq(Y ) [log p(X,Y )]− Eq(Y ) [log q(Y )] (10)
(11)

which is known as the evidence lower bound of log-likelihood of the observed variable, since we
have

−KL(q(Y )‖p(X,Y )) = log p(X)−KL(q(Y ‖p(Y |X))) ≤ log p(X) (12)

2 EM-Recap
Here, we will show the convergence of EM algorithm from functional perspective. As we know, the
EM is to iteratively maximize the log likelihood of observed data, which is

L(θ|X) = log p(X|θ) = log

∫
y

p(X,Y |θ)dy (13)

Any distribution over the hidden variables, denoted by q(Y ), can be used to obtained a lower
bound on the log-likelihood using Jensen’s inequality, which can be expressed as

L(θ|X) = log

∫
y

q(Y )
p(X,Y |θ)
q(Y )

dy (14)

= logEq(Y )

[
p(X,Y |θ)
q(Y )

]
(15)

≥ Eq(Y )

[
log

p(X,Y |θ)
q(Y )

]
(16)

=

∫
y

q(Y ) log
p(X,Y |θ)
q(Y )

dy (17)

= F (q, θ) (18)

where F (q, θ) denotes the functional, which is always lower bound on the log-likelihood. In the
EM algorithm, we alternatively optimize over q and θ.

First, we can find the lower bound of the log-likelihood using functional F (q, θ):

F (q, θ) =

∫
y

q(Y ) log
p(X,Y |θ)
q(Y )

dy (19)

=

∫
y

q(Y ) log
p(Y |X, θ) · p(X|θ)

q(Y )
dy (20)

=

∫
y

q(Y ) log
p(Y |X, θ)
q(Y )

dy +

∫
y

q(Y ) log p(X|θ)dy (21)

= −KL(q(Y )‖p(Y |X, θ)) + L(θ|X) (22)
= L(θ|X)−KL(q(Y )‖p(Y |X, θ)) (23)

(24)

since KL divergence is alway non-negative, we have

L(θ|X) = F (q, θ) +KL(q(Y )‖p(Y |X, θ)) ≥ F (q, θ) (25)

which means F (q, θ) is always lower bound of log-likelihood of observed data, when θ is fixed. Thus,
at k-th iteration of E-step, we would like tomaximize F (q, θ) (the lower bound of L(θ(k−1)|X))
w.r.t the distribution over hidden variable given the parameters. KL[q‖p] = 0 if and
only if q = p, so we can simply use the maximal q(Y ) = p(Y |X, θ(k−1)) at k-th iteration of E-step.
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Secondly,

F (q, θ) =

∫
y

q(Y ) log
p(X,Y |θ)
q(Y )

dy (26)

=

∫
y

q(Y ) log p(X,Y |θ)dy −
∫
y

q(Y ) log q(Y )dy (27)

=

∫
y

q(Y ) log p(X,Y |θ)dy +H(q) (28)

=

∫
y

p(Y |X, θ) log p(X,Y |θ)dy +H(q) (29)

= EY |X [log p(X,Y |θ)] +H(q) (30)

After we fix the q, we can optimize F (θ,X) w.r.t θ.

In summary,
E-step:

q(k)(Y ) := arg max
q(Y )

F (q(Y ), θ(k−1)) (31)

= arg max
q(Y )

L(θ(k−1)|X)−KL[q(Y )‖p(Y |X, θ(k−1))] (32)

M-step:

θ(k) = arg max
θ
F (q(k)(Y ), θ(k−1)) (33)

= arg max
θ
EY |X(log p(X,Y |θ)) +H(q) (34)

= arg max
θ
EY |X(log p(X,Y |θ)) (35)

= arg max
θ

∫
y

p(Y |X, θ(k−1)) · log p(X,Y |θ)dy (36)

= arg max
θ

∫
y

q(k)(Y ) log p(X,Y |θ)dy (37)

where the last equation is from E-step q(k) = p(Y |X, θ(k−1))

L(θ(k−1)|X) =︸︷︷︸
E-step

F (q(k), θ(k−1)) ≤︸︷︷︸
M-step

F (q(k), θ(k)) ≤︸︷︷︸
Jensen Inequality or Non-negative KL

L(θ(k)|X)

(38)

3 Goal of Variational Inference
We can see that any distribution q(Y ) over the hidden variable (which can be the distribution
parameters of observed data) or missing data Y in EM, can be used to obtained a lower bound
F (q, θ) on the log-likelihood L(θ|X), where

L(θ|X) = F (q(Y ), θ) +KL(q‖p(Y |X)) (39)

The F (q, θ) is also known as the evidence lower bound (ELBO). Our ultimate target is to maximize
the log-likelihood on observed data, and opt to optimize the RHS. Now, we turn the inference into
an optimization problem.

Intuitively, we can minimize the KL-divergence and everything is done. However, the KL-
divergence contains the posterior distribution, which is hard to minimize. We opt to maxi-
mize the lower bound, which is equivalent to minimize the KL-divergence, our goal is to find
q(Y ) = p(Y |X, θ). The problem here is the posterior distribution p(Y |X, θ) is usually intractable.
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Note, when KL-divergence is small, we can say q is good approximation of distribution p. The vari-
ational inference is used to approximate the posterior distribution or even more general problem.
Variational inference will iteratively reach closely to the posterior distribution q.

Figure 1: Visualization of variational inference. The green curve is the true distribution, which
is hard to compute, and blue curve is our chosen simple distribution to approximate the true
distribution.

4 Strategies
But how can we do that ? The distribution q should comprise some properties to ensure us to
do this kind of approximation. Note, we can also use other metric rather than KL-divergence to
measure the difference between p and q, but KL-divergence makes life easier.

There are several methods to approximate a complicated distribution:

1. restrict the family sufficiently that they comprise only tractable distribution

2. meanwhile, allow the family to be sufficiently rich and flexible that it can provide a good
approximation to the true posterior distribution

Two ways to restrict the family of approximating distribution:

1. just use a parametric distribution q(Y |w) governed by a set of parameters w. The lower
bound F (q, θ) becomes a function of w, which can be optimized

2. Factorized distribution. Suppose we can partition latent elements of Y into disjoint groups
that denote by Yi where i = 1, ...,M , and we assume

q(Y ) =

M∏
i=1

qi(Yi) (40)

which is also known as Mean Field Theory, where this assumption can simplify our for-
mulation later. Mean-field variational inference casts Bayesian computation as optimization.
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5 Mean Field Variational Inference
We assume the variational distribution over the latent variables factorizes as

q(Y ) = q(Y1, ..., YM ) =

M∏
i=1

qi(Yi) (41)

This family does not contain the true posterior because it assumes the hidden variables are
independent, since the dependencies are often what makes the posterior difficult to work with.

F (q, θ) =

∫
y

q(Y ) log

{
p(X,Y )

q(Y )

}
dy (42)

=

∫
y

M∏
i=1

qi(Yi)

{
log p(X,Y )−

M∑
i=1

log qi(Yi)

}
dy (43)

=

∫
y

M∏
i=1

qi(Yi) log p(X,Y )dy︸ ︷︷ ︸
part1

−
∫
y

M∏
i=1

qi(Yi)

M∑
i=1

log qi(Yi)dy︸ ︷︷ ︸
part2

(44)

For part 1, we can expand the integrals for each variable and rearrange the expression by taking
a particular qj(Yj) out of the integral:

part1 =

∫
Y1

∫
Y2

...

∫
YM

M∏
i=1

qi(Yi) log p(X,Y )dY1dY2...dYM (45)

=

∫
Yj

qj(Yj)
(∫

Yi6=j

· · ·
∫

log p(X,Y ) ·
M∏
i6=j

[qi(Yi)dYi]︸ ︷︷ ︸
relative independence from mean-field theorem︸ ︷︷ ︸

after integral, this term remains log p(X,Yj)

)
dYj (46)

=

∫
Yj

qj(Yj)
[
Ei 6=j [log(p(X,Y ))]

]
dYj (47)

Note that, we cannot always be able to rearrange the order of integrals.
For part 2, we also needs to integrate out all Y = {Y1, ..., YM}. However, notice that each term

in the sum,
∑M
i=1 log(qi(Yi)) involves only a single i, therefore, we are able to simplify further

part2 =

∫
Y1

· · ·
∫
YM

M∏
i=1

qi(Yi)

M∑
i

log qi(Yi)dYi · · · dYM (48)

=

∫
Y1

· · ·
∫
YM

log q1(Y1)

M∏
i=1

qi(Yi)dYi · · · dYM + · · ·+
∫
Y1

· · ·
∫
YM

log qM (YM )

M∏
i=1

qi(Yi)dYi · · · dYM

(49)

=

∫
Y1

log q1(Y1)

∫
Y2

· · ·
∫
YM

M∏
i=1

qi(Yi)dYi · · · dYM + · · ·+
∫
YM

log qM (YM )

∫
Y1

· · ·
∫
YM−1

M∏
i=1

qi(Yi)dYi · · · dYM

(50)

=

∫
Y1

[log q1(Y1)] · q1(Y1)dY1 + · · ·+
∫
YM

[log qM (YM )] · qM (YM )dYM (51)

=

M∑
j=1

(∫
Yj

[log qj(Yj)] · qj(Yj)dYj
)

(52)

For a particular pj(Yj), the rest of the sum can be treated like a constant, part 2 can be written
as:

part2 =

∫
Yj

[log qj(Yj)] · qj(Yj)dYj + const. (53)
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Combine part 1 and part 2, and we let

log p̃(X,Yj) = Ei 6=j [log(p(X,Y ))] (54)

F (qj , θ) =

∫
Yj

qj(Yj)
[
Ei 6=j [log(p(X,Y ))]

]
dYj −

M∑
j=1

(∫
Yj

[log qj(Yj)] · qj(Yj)dYj
)

(55)

=

∫
Yj

qj(Yj)
[
Ei 6=j [log(p(X,Y ))]

]
dYj −

∫
Yj

[log qj(Yj)] · qj(Yj)dYj + const. (56)

=

∫
Yj

qj(Yj)
[

log p̃(X,Yj)
]
dYj −

∫
Yj

[log qj(Yj)] · qj(Yj)dYj + const. (57)

=

∫
Yj

qj(Yj) log
p̃(X,Yj)

qj(Yj)
dYj + const. (58)

= −KL(qj(Yj)‖p̃(X,Yj)) + const. (59)

Therefore, our goal is to maximize the F (qj , θ), which is same as minimize KL(qj(Yj‖p̃(X,Yj)))
and the minimum occurs when

q∗j (Yj) = p̃(X,Yj) (60)

log q∗j (Yj) = log p̃(X,Yj) = Ei 6=j [log(p(X,Y ))] (61)

5.1 Coordinate Ascent Inference
We will use coordinate ascent inference, iteratively optimizing each variational distribution holding
the others fixed.

1. initialize every qj(Yj)

2. calculate q∗j (Yj) with all other fixed

3. the iterative procedure will converge because the F (qj , θ) is convex for each factor qj(Yj).

However, this is not the only possible optimization algorithm.

5.2 Posterior Conditional
Now, we will show another way to get the coordinate ascent update. Recall that

F (q, θ) =

∫
y

q(Y ) log

{
p(X,Y )

q(Y )

}
dy (62)

=

∫
y

q(Y ) log {p(X,Y )} dy −
∫
y

q(Y ) log {q(Y )} dy (63)

= Eq(Y )[log(p(X1:N , Y1:M ))]− Eq(Y )[log(q(Y1:M ))] (64)
(65)

First, recall that the probability chain rule gives:

p(Y1:M , X1:N ) = p(X1:N )

M∏
j=1

p(Yj |Y1:j−1, X1:N ) (66)

Note that, the latent variables in this product can occur in any order ! This will be important
later.

Second, we can decompose the entropy term of the ELBO (using the mean field variational
approximation) as

Eq(Y )[log(q(Y1:M ))] =

M∑
j

Eqj(Yj)[log(qj(Yj))] (67)
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Then, we can decompose the ELBO for the mean field variational approximation into a nice
form:

F (q, θ) = Eq(Y )[log(p(X1:N , Y1:M ))]− Eq(Y )[log(q(Y1:M ))] (68)

= Eq(Y )

[
log(p(X1:N )

M∏
j=1

p(Yj |Y1:j−1, X1:N )
]
− Eq(Y )[log(q(Y1:M ))] (69)

= Eq(Y )

[
log(p(X1:N ) +

M∑
j=1

log p(Yj |Y1:j−1, X1:N )
]
− Eq(Y )[log(q(Y1:M ))] (70)

= log(p(X1:N ) + Eq(Y )

[ M∑
j=1

log p(Yj |Y1:j−1, X1:N )
]
− Eq(Y )[log(q(Y1:M ))] (71)

Since we assume the latent variable Yj are independent, we have

p(Yj |Y1:j−1, X1:N )) = p(Yj |Y−j , X1:N ) (72)

where the notation −j denotes all indices other than the jth, which is also called the "posterior
conditional" of Yj , given all other latent variables and observations. This posterior conditional
is very important in mean field variational bayes, and will be important in Gibbs
sampling.

Next, we want to derive the coordinate ascent update for a latent variable, keeping all other
latent variables fixed. Removing the parts that do not depend on qj(Yj), we can write,

arg max
qj

F (q, θ) (73)

= arg max
qj

(Eq[log p(Yj |Y−j , X1:N )]− Eqj(Yj)[log(qj(Yj))]) (74)

= arg max
qj

(∫
qj(Yj)Eq−j

[log p(Yj |Y−j , X1:N )]dYj −
∫
qj(Yj) log qj(Yj)dYj

)
(75)

= arg maxF (qj , θ) (76)

• To find the argmax, we take the derivative of F (qj , θ) with respect to qj(Yj), use Lagrange
multipliers, and set the derivative to zero:

dF (qj , θ)

dqj(Yj)
= Eq−j [log p(Yj |Y−j , X)]− log qj(Yj)− 1 = 0 (77)

• From this, we arrive at the coordinate ascent update:

q∗j (Yj) ∝ exp{Eq−j
[log p(Yj |Y−j , X)]} (78)

• Based on the Bayes’ rule, since the denominator of the conditional does not depend on Yj ,
we can equivalently write

q∗j (Yj) ∝ exp{Eq−j
[log p(Yj , Y−j , X)]} (79)

5.3 Exponential Family Conditionals
Even though we have the coordinate ascent update:

q∗j (Yj) ∝ exp{Eq−j
[log p(Yj |Y−j , X)]} (80)

which is not a closed form, it is also difficult to compute. The question here is that is there a
general form for models in which the coordinate updates in mean field variational inference are
easy to compute and lead to closed-form updates? Yes, the answer is exponential family
conditionals, i.e. models with conditional densities that are in an exponential family, i.e. of the
form:

p(Yj |Y−j , X)] = h(Yj) exp{η(Y−j , X)>φ(Yj)−A(η(Y−j , X))} (81)
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where η, h,A and φ are functions that parameterize the exponential family. And different choices of
these parameters lead to many popular densities (normal, gamma, exponential, Bernouilli, Dirich-
let, categorical, beta, Poisson, geometric, etc.). We call these exponential-family-conditional
models, a.k.a conditionally conjugate models.

We can derive a general formula for the coordinate ascent update for all exponential-family
conditional models.

1. we will choose the form of our local variational approximation q(Yj ; Λj) to be the same
as the conditional distribution (i.e. in an exponential family), where Λj are parameters for
this local distribution.

2. When we perform our coordinate ascent update, we will see that the update yields an optimal
q(Yj ; Λj) in the same family, which only change the value of Λj , which significantly simplify
the computation.

We need to go through one example about the exponential family. Please check the note Expo-
nential Family for details.

6 Stochastic Gradients of the ELBO
The classical variational inference is inefficient when data is massive:

• Do some local computation for each data point

• aggregate these computation to re-estimate global structure

• repeat

Stochastic variational inference scales it to massive data.

7 Black-Box Variational Inference
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