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1 Model From Logistic Regression View
More specifically, we can consider a log-linear model, which has a parameter w ∈ Rn that defines a distribution
over m labels for a given input x ∈ X as follows

pw(y|x) :=
exp(w>φ(x, y))∑m

y′=1 exp(w
>φ(x, y′))

∀y ∈ [m] (1)

note: using this class probability is equivalent to using a logistic regression model.

Recall the logistic regression in binary classification,

hw(x) =
1

1 + exp(−w>x)

1− hw(x) = 1− 1

1 + exp(−w>x)
=

exp(−w>x)
1 + exp(−w>x)

=
1

1 + exp(w>x)

(2)

and the main property of logistic loss function is

g(z) =
1

1 + exp(−z)

g(−z) = 1

1 + exp(z)
=

1

1 + 1
exp(−z)

=
1

1+exp(−z)
exp(−z)

=
exp(−z)

1 + exp(−z)

g(z) + g(−z) = 1

(3)

2 Standard SVM
Given the training data S = {(x1, y1), ..., (xn, yn)},and the class label yi ∈ {1,−1}. Now, we consider the
probability for the class label that are proportional to the exponential of a linear function of the data

p(yi = 1|w, xi) ∝ exp(w>xi)

p(yi = −1|w, xi) ∝ exp(−w>xi)
(4)

where are ignore the bias term for simplicity.
Now, we can find the optimal w by maximizing the log-likelihood, or equivalently minimizing the negative

log-likelihood

min
w
− log

∏
i

p(yi|w, xi) = min
w
−
∑
i

log p(yi|w, xi) (5)

Since the optimal solution w is not necessary unique, since we can rescale the w and the optimal parameters
may be unbounded. To yield a unique solution and avoid over-fitting, we typically add a penalty on the `2-norm
of the parameter vector and compute the penalized maximum likelihood estimate

argmin
w
−
∑
i

log p(yi|w, xi) + λ‖w‖22 (6)

With the estimate w, we can predict the label with

ŷ =

{
1 if p(yi = 1|w, xi) > p(yi = −1|w, xi)
−1 if p(yi = 1|w, xi) < p(yi = −1|w, xi)

(7)
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If we want the training set S is correctly trained, we can further generalize above to

∀i p(yi|w, xi)
p(−yi|w, xi)

≥ c (8)

where c > 1.
The exact choice of c is arbitrary, since if we can satisfy this for some c > 1, then we can also satisfy it for
any c′ > 1 by rescaling w. View it as different shape of logistic function.

Taking logarithms on both side, we get

∀i, log p(yi|w, xi)− log p(−yi|w, xi) ≥ log c (9)

Now, we can plug in the definition of p(yi|w, xi), which is proportion to exp(w>xi), and since we can rescale
c, we can get

∀i, 2yiw>xi ≥ log c (10)

If we pick c such that 1
2 log c = 1, so that our conditions can be written in a very simple form

∀i, yiw>xi ≥ 1 (11)

The above is a linear feasibility problem, and it can be solved using techniques from linear programming.
However,

• the solution may not be unique

• there may be no solution

For the first issue, we can restrict `2-norm regularization on w, and leads to quadratic program

min
w
λ‖w‖22

s.t. ∀iyiw>xi ≥ 1
(12)

For the second issue, we can introduce the slack variables ξ, and get

min
w,ξ

∑
i

ξi + λ‖w‖22

s.t. ∀iyiw>xi ≥ 1− ξi ∀iξi ≥ 0

(13)

3 Multi-class SVM
In binary SVM, we use one hyperplane to separate 2 classes. Now in multi-class SVM, we will use k hyperplanes
to separate k classes. That is, each class is associated with one weight vector wk, and we consider

p(yi = k|wk, xi) ∝ exp(w>k xi) (14)

and

ŷi = max
k

p(yi = k|wk, xi) (15)

In order to make all training instances are classified correctly, we would like

∀i p(yi|w, xi)
maxk 6=yi p(yi = k|wk, xi)

≥ c (16)

And we also introduce the slack variables ξ, and lead to multi-class svm formulation

min
w,ξ

∑
i

ξi + λ‖w‖22

s.t.∀i,∀k 6= yi, w>yixi − w
>
k xi ≥ 1− ξi

∀iξi ≥ 0

(17)

An equivalent unconstrained optimization problem where we eliminate the slack variables is

min
w

∑
i

max
k 6=yi
{0, (1− w>yixi + w>k xi)}+ λ‖w‖22 (18)
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