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1 Model From Logistic Regression View

More specifically, we can consider a log-linear model, which has a parameter w € R™ that defines a distribution
over m labels for a given input x € X as follows
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Pu(ylr) = Yy € [m] (1)
b Sy exp(w’(z,y))
(note: using this class probability is equivalent to using a logistic regression model. J

Recall the logistic regression in binary classification,
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and the main property of logistic loss function is
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2 Standard SVM

Given the training data S = {(z1,v1), ..., (Tn,yn)},and the class label y; € {1,—1}. Now, we consider the
probability for the class label that are proportional to the exponential of a linear function of the data
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p(y; = —1l|w, x;) x exp(—w—rxi)

where are ignore the bias term for simplicity.
Now, we can find the optimal w by maximizing the log-likelihood, or equivalently minimizing the negative
log-likelihood

rgin—long(yi|w7xi) = mgn—zlogp(yi\w»xi) (5)

Since the optimal solution w is not necessary unique, since we can rescale the w and the optimal parameters
may be unbounded. To yield a unique solution and avoid over-fitting, we typically add a penalty on the £5-norm
of the parameter vector and compute the penalized maximum likelihood estimate

arglr;})nleogp(yilwvﬂfi) + Allw|3 (6)
With the estimate w, we can predict the label with

g:{l if Pl = Vw,z0) > ply; = 1w, z:) -

-1 if plys =lw, ;) <plys = —1|w, x;)



If we want the training set S is correctly trained, we can further generalize above to

p(_yi|w7xi)
where ¢ > 1.

The exact choice of ¢ is arbitrary, since if we can satisfy this for some ¢ > 1, then we can also satisfy it for
any ¢’ > 1 by rescaling w. View it as different shape of logistic function.

Taking logarithms on both side, we get
Vi, log p(yi|w, x;) — log p(—y;|w, ;) > logc (9)

Now, we can plug in the definition of p(y;|w, x;), which is proportion to exp(w " z;), and since we can rescale
¢, we can get

Vi, 2y;w ' x; > log e (10)
If we pick ¢ such that %logc = 1, so that our conditions can be written in a very simple form
Vi, yaw x> 1 (11)

The above is a linear feasibility problem, and it can be solved using techniques from linear programming.
However,

e the solution may not be unique
e there may be no solution

For the first issue, we can restrict £>-norm regularization on w, and leads to quadratic program

min \|jw)||
v (12)
s.t. Viyiw—'—xi >1
For the second issue, we can introduce the slack variables £, and get
min Y & + Al|wlf3
v (13)

s.t. Viyiw—rxi >1-& Vig; >0

3 Multi-class SVM

In binary SVM, we use one hyperplane to separate 2 classes. Now in multi-class SVM, we will use k hyperplanes
to separate k classes. That is, each class is associated with one weight vector wy, and we consider

pys = klwy, z;) o exp(wy) z;) (14)
and
gi = maxp(y; = kfw, ;) (15)

In order to make all training instances are classified correctly, we would like

maXpy, P(yi = klw, ;)
And we also introduce the slack variables £, and lead to multi-class svm formulation
131?25 + Allw]3
3
s.t.Vi,Vk # y;, w;—xl — w,;racz >1-& (17)
Vig; > 0
An equivalent unconstrained optimization problem where we eliminate the slack variables is
min » " max{0, (1 — w,, z; + wy 2:)} + Allw|3 (18)
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