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1 Problem
The goal is to learn a mapping from input x ∈ X to discrete outputs y ∈ Y based on a training sample of
input-output pairs (x1,y1), ..., (x2,yn) ∈ (X×Y ) drawn from some fixed but unknown probability distribution.
Note, here we consider structured output space Y , and y ∈ Y may be sequences, strings, labeled trees, or graphs.
The structured SVM generalize the general large margin methods, more specifically multi-class SVMs to the
broader problem of learning structured responses y.
Note: general margin is defined as yi · f(xi), recall the functional margin and geometry margin in standard
SVM. This idea may be used in the formulation. Question: what is the formulation of multi-class SVM ?

2 Ideas
• The simple idea is to generalize multi-class SVM, and treat each structure as a separate class. However,

this is intractable, because too many classes

• We need to specify discriminant functions that exploit the structure and dependencies within Y.
Question: how does this idea arise ?

• The key idea is the generalization of the maximum-margin principle.

3 Multi-class SVM
First, let’s introduce the one of multi-class SVM method that is different from One-against-the-Rest and One-
against-One classifiers, which use a combination of binary classification rules. This method is a direct general-
ization of the binary classification SV method[2].

Recall, the formulation of standard binary SVM is

φ(w, ξ) =
1

2
(w>w) + C

n∑
i=1

ξi

s.t. yi((w
>ϕ(xi)) + b) ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n.

(1)

If we view hyperplane in binary SVM as a decision function, then a more natural way to solve k-class
problems is to construct a decision function by considering all classes at once. Hence, one can generalize the
standard binary SVM to the following.

Given a labeled training set S = {(x1, y1), ..., (xn, yn)}, where xi ∈ Rd and yi ∈ {1, ..., k}, the formulation
given by Crammer and Singer is [4]

min
wm∈H,ξ∈Rn×k

φ(w, ξ) =
1

2

k∑
m=1

(w>mwm) + C

n∑
i=1

ξi

s.t. (w>yiϕ(xi)) + δyi,m ≥ (w>mϕ(xi)) + 1− ξi,
ξi ≥ 0,

i = 1, ..., n;

(2)

where δyi,m = 1 if yi = m, and 0 otherwise.
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Weston and Watkins[2] introduce n|Y | − n slack variables, But here, we only use n slack variables. Please
check extra note on relation between multi-class SVM and logistic regression model for details. I think we
can use other scalar to replace 1, but it will have several optimal w by simply rescaling it. Please check
standard SVM, functional margin and geometry margin. We can simply view 1 as the margin between the
true label yi and the best ∈ Y \yi.

In the point of view of multi-class classification, we replace the misclassification error of an example with
the following piecewise linear bound:

max
m∈Y \yi

{wm · ϕ(xi) + 1− δyi,m} −wyi · ϕ(xi) (3)

where δp,q = 1 if p = q and 0 otherwise. We can call the value of the inner product of wi with the instance ϕ(x)
the confidence and the similarity score for the ith class. Note, the above bound is 0 if the confidence value
for the correct label is larger by at least one than the confidences assigned to the rest of the labels. Otherwise,
we suffer a loss which is linearly proportionally to the difference between the confidence of the correct label and
the maximum among the confidences of the other labels.

Figure 1: Illustration of the margin bound employed in multi-class SVM. Correct label is plotted in dark grey.
The height of each label designates its confidence. The left plot corresponds to the case when the margin is
larger than one, and therefore the error bound equals zero, and hence the example is correctly classified. The
middle figure shows a case where the example is correctly classified but with small margin and we suffer some
loss. The right plot depicts the loss of a misclassified example. In the middle and right plots, double-arrow
denotes the error bound, and single-arrow denotes the loss. Note that error and loss are two different things in
the context.

Summing over all the examples in S we get an upper bound on the empirical loss

ES ≤
1

n

n∑
i=1

[ max
m∈Y \yi

{wm · ϕ(xi) + 1− δyi,m} −wyi · ϕ(xi)] (4)

We say that a sample S is linearly separable by multi-class machine if there exists a set of {wi|i = 1, ..., k} such
that the above loss is equal to 0, that is

∀i max
m∈Y \yi

{wm · ϕ(xi) + 1− δyi,m} −wyi · ϕ(xi) = 0 (5)

which is same as

∀i,m wyi · ϕ(xi) + δyi,m −wm · ϕ(xi) ≥ 1 (6)

In the general case the sample S might not be linearly separable by a multi-class machine. We therefore add
slack variables ξi ≥ 0 and modify the constraints to be,

∀i,m wyi · ϕ(xi) + δyi,m −wm · ϕ(xi) ≥ 1− ξi (7)

4 Discriminant Functions
In the structured SVM, we can further generalize the multi-class SVM. First, we can define discriminant functions
as

F : X × Y → R (8)

Note, the domain is input × output space, and the approach we pursue is to learn a discriminant function F
over input × output pairs from which we can derive a prediction by maximizing F over the response variable
y for a specific given input x. The number of possible y corresponds to a fixed x should be tractable.
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General Form of Our Hypothesis:

f(x,w) = arg max
y∈Y

F (x,y;w) (9)

where w denotes a parameter vector. We assume F to be linear in some combined feature representation of
inputs and output Ψ(x,y),

F (x,y;w) = 〈w,Ψ(x,y)〉 (10)

Note, the specific form of Ψ depends on the nature of the problem. We can view Ψ(x,y) as combining and
mapping input and output features to a space, where we can apply numerical optimization.

4.1 Example of Ψ(x, y)

Assuming we have a list of predefined context free grammars (rules), and each rule gj has a corresponding
weight wj . Now, feeding a sentence, we can build a parse tree based on CFGs (see figure). Here, we can design
the function Ψ(x,y) as a histogram vector counting how often each grammar rule gj occurs or used in the tree
y.

Figure 2: Illustration of natural language parsing model

In this example, f(x;w) can be efficiently computed by finding the structure y ∈ Y that maximize F (x,y;w)
via the CKY algorithm.
Question: so here w is predefined in this example ? No, w will be learned when we feeding training samples
S = {(xi,yi)}, such that training error is minimized. For example, in multi-class SVM we have k classes,
then each class corresponds to one wk. In structured SVM, we are looking for only one w that maximize
the determinant function.

5 Loss Function
We assume availability of a bounded loss function

4 : Y × Y → R (11)

where 4(y, ŷ) quantifies the loss associated with a prediction ŷ to the true output value y. For example, in
natural language parsing, there exists a metric to measure the difference from the predicted parse tree to the
correct parse tree.

The Generalization Error or Risk of our predicted hypothesis f can be formulated as

R4P (f) =

∫
X×Y

4(y, f(x))dP (x,y) (12)

where P (x,y) is the unknown true distribution of input-output pairs.

The Empirical Risk of our predicted hypothesis f can be formulated as

R4S (f) =
∑

(xi,yi)∈S

4(yi, f(xi)) (13)

where S is a set of training samples. Note, in our case, we use the discriminant function, which is parameterized
by vector w. Thus, we will also write R4P (w) = R4P (f(·;w)).
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6 Margins and Margin Maximization

6.1 Hard Margin Case
In separable case, there exists a ERM hypothesis f , such that for all (xi,yi) ∈ S,

f(xi;w) = yi = arg max
y∈Y

F (xi,y;w) = arg max
y∈Y
〈w,Ψ(xi,y)〉 (14)

Thus, we have

∀i : max
y∈Y \yi

F (xi,y;w) < F (xi,yi;w)

∀i : max
y∈Y \yi

{〈w,Ψ(xi,y)〉} < {〈w,Ψ(xi,yi)〉}
(15)

If we define

δΨi(y) := Ψ(xi,yi)−Ψ(xi,y) (16)

then we can replace n nonlinear constraint in (11) with n|Y | − n linear constraints

∀i,∀y ∈ Y \yi : 〈w, δΨi(y)〉 > 0 (17)

If the set of n|Y | − n inequalities is feasible, there will typically be more than one solution w∗, because we can
scale the w∗. Therefore, we need to select the w with ‖w‖ ≤ 1 for which the score of the correct label yi is
uniformly most different from the closest runner-up ŷi(w) = arg maxy 6=yi

〈w,Ψ(xi,y)〉 . This generalizes the
maximum-margin principle employed in SVMs to the more general case here.
Question: how to interpret the red sentence ? Note that, in large-margin method, large margin implies
small w, and further implies regularized solution and good generalization.[7]

Let’s go back to the origin problem that we want to maximize the margin (or difference) between true label
yi and the best y ∈ Y \yi, and we define the difference as

γ̂ = 〈w,Ψ(xi,yi)〉 − max
y∈Y \yi

〈w,Φ(xi,y)〉 (18)

Intuitively, We want the difference to be as large as possible to make our prediction on testing data to be
confident and correct. However, we can scale the w to make γ large, but it does not change our confidence,
because the difference between arbitrary two 〈w,Ψ(xi,yi)〉 is also scaled, and it does not change the order or
location. Therefore, we would like to replace w with w

‖w‖ , and define

γ = 〈 w

‖w‖
,Ψ(xi,yi)〉 − max

y∈Y \yi

〈 w

‖w‖
,Φ(xi,y)〉 (19)

and if ‖w‖ = 1, then γ = γ̂

Thus, our objective is to maximize the γ, and we can formulate our initial problem as

max
γ,w

γ

s.t. 〈w,Ψ(xi,yi)〉 − 〈w,Ψ(xi,y)〉 ≥ γ ∀i,∀y ∈ Y \yi
‖w‖ = 1

(20)

The ‖w‖ = 1 constraint moreover ensures that γ = γ̂, so we are also guaranteed that all 〈w,Ψ(xi,yi)〉−
〈w,Ψ(xi,y)〉 ≥ γ.

However, the ‖w‖ = 1 constraint is a nasty non-convex one.

max
γ̂,w

γ̂

‖w‖
s.t. 〈w,Ψ(xi,yi)〉 − 〈w,Ψ(xi,y)〉 ≥ γ̂ ∀i, ∀y ∈ Y \yi

(21)

Now, we remove the constraint ‖w‖ = 1, but the objective becomes non-convex.

Recall that we can add an arbitrary scaling constraint on w without changing the layout of each Ψ(xi,yi).
Thus, we would like introduce the scaling constraint on w such that

γ̂ = 〈w,Ψ(xi,yi)〉 − max
y∈Y \yi

〈w,Φ(xi,y)〉 = 1 (22)
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Thus, our formulation becomes

max
w

1

‖w‖
s.t. 〈w,Ψ(xi,yi)〉 − 〈w,Ψ(xi,y)〉 ≥ 1 ∀i, ∀y ∈ Y \yi

(23)

The resulting hard-margin optimization problem is

[SVM0] min
w

1

2
‖w‖2

s.t.〈w, δΨi(y)〉 ≥ 1 ∀i, ∀y ∈ Y \yi
(24)

where δΨi(y) = 〈w,Ψ(xi,yi)〉 − 〈w,Ψ(xi,y)〉.

6.2 Soft Margin Case

We introduce one slack variable for every non-linear constraint (11), and add a penalty term that is
linear in the slack variables to the objective results in the quadratic program [4]

[SVM1] min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi s.t. ∀i, ξi ≥ 0

s.t.∀i ∀y ∈ Y \yi : 〈w, δΨi(y)〉 ≥ 1− ξi

(25)

where C > 0 is a constant that controls the trade-off between training error minimization and margin
maximization. Adding the slack variable will result in a upper bound on the empirical risk and offers
some additional algorithmic advantages.

Question: Is ξi hinge loss here? ξi is used to count the number of errors, and we can use surrogate loss to
approximate the 0-1 loss, such as hinge loss and logistic function. We can replace the C

n

∑n
i=1 ξi with

C
2nξ

2
i

to smooth the function. The front can be think as sparse learning.

6.3 Generalization to Arbitrary Loss Function
The formulation (19) implicitly considers the zero-one classification loss. That means if predicted y is same
as yi, then loss is 4(y,yi) = 0, and 4(y,yi) = 1 otherwise. Thus ξi is same as ξi

4(y,yi)
. However, in the

structured data setting, we would like the prediction loss is associated with 4(yi,y). In general, violating a
margin constraint involving a y 6= yi with high loss 4(yi,y) should be penalized more severely than smaller
loss 4(yi,y). Otherwise, violating the margin constraint for yi and yj may have same penalty (ξi = ξj), but
very different loss 4(yi,y) and 4(yj , y). Therefore, we use 3 methods belows

[SVM4s1 ] min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi s.t. ∀i, ξi ≥ 0

s.t.∀i ∀y ∈ Y \yi : 〈w, δΨi(y)〉 ≥ 1− ξi
4(yi,y)

(26)

[SVM4s2 ] min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi s.t. ∀i, ξi ≥ 0

s.t.∀i ∀y ∈ Y \yi : 〈w, δΨi(y)〉 ≥ 1− ξi√
4(yi,y)

(27)
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This approach is to rescale the margin for the special case of the Hamming loss

[SVM4m2 ] min
w

1

2
‖w‖2 +

C

n

n∑
i=1

ξi s.t. ∀i, ξi ≥ 0

s.t.∀i ∀y ∈ Y \yi : 〈w, δΨi(y)〉 ≥ 4(yi,y)− ξi

(28)

7 Dual Programs
New problem: the primal problems have a large number of margin constraints, and we cannot use standard QP
solvers to solve them. Hence, we have to seek helps from the dual problem. By applying Lagrangian dual, we
can get the dual program of SVM0 as

max
α

∑
i,y 6=yi

αiy −
1

2

∑
i,y 6=yij,ȳ 6=yj

αiyαjy〈δΦi(y), δΦj(ȳ)〉

s.t. ∀i,∀y 6= Y \yi : αiy ≥ 0

(29)

It should be ∀i,∀y ∈ Y \yi : αiy ≥ 0 ?
First, we can get the Lagrangian for SVM0

L(w, α) =
1

2
‖w‖2 +

m∑
i=1

αiy[1− 〈w, δΨi(y)〉]

=
1

2
‖w‖2 −

m∑
i=1

αiy[〈w, δΨi(y)〉 − 1] ∀i,y ∈ Y \yi

(30)

Note, the size of α is n|Y | − n and α ≥ 0. Then, we have Lagrangian dual

g(α) = min
w

L(w, α) (31)

We denote p∗ is the optimal value of primal problem SVM0, then we have fact that

g(α) ≤ p∗ (32)

and we can formulate the dual problem as

max
α

g(α) = max
α

min
w

L(w, α)

s.t. α ≥ 0
(33)

We denote by d* the optimal value of dual problem. Thus we can present weak duality and strong duality as
Weak duality :

d∗ = max
α≥0

min
w

L(w, α) ≤ min
w

max
α≥0

L(w, α) = p∗ (34)

Strong duality:

d∗ = p∗ (35)

Since the primal problem is convex, and slater condition always holds for affine constraints, we can conclude
strong duality holds. Also, if strong duality holds and w∗ and α∗ are optimal, then they must satisfy the KKT
conditions, which are

1. primal constraints: fiy(w∗) = 1− 〈w, δΨi(y)〉 ≤ 0 ∀i,∀y ∈ Y \yi

2. dual constraints: α∗iy ≥ 0 ∀i,∀y ∈ Y \y

3. complementary slackness: αiyfiy(w∗) = 0 ∀i,∀y ∈ Y \y, that is

α∗iy(1− 〈w, δΨi(y)〉) = 0 ∀i,∀y ∈ Y \y (36)
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4. gradient of Lagrangian with respect to w∗ vanishes

∇f0(w∗) +
∑
i

∑
y∈Y \yi

αiy∇fiy(w∗) = 0

that is

w∗ −
∑
i

∑
y∈Y \yi

αiyδΨi(y) = 0 (37)

Now, we can formulate our dual problem of SVM0

max
α

min
w

L(w, α) (38)

= max
α

min
w

1

2
‖w‖2 −

n∑
i=1

∑
y 6=yi

αiy[〈w, δΨi(y)〉 − 1] (39)

= max
α

1

2
‖w∗‖2 −

n∑
i=1

∑
y 6=yi

αiy[〈w∗, δΨi(y)〉 − 1] (40)

= max
α

1

2
‖
∑
j

∑
y∈Y \yj

αjȳδΨj(ȳ)‖2 −
∑
i

∑
y∈Y \yi

αiy[〈
∑
j

∑
ȳ∈Y \yj

αjȳδΨj(ȳ), δΨi(y)〉 − 1] (41)

= max
α

∑
i,y 6=yi

αiy −
1

2

∑
i,y 6=yi
j,ȳ 6=yj

αiyαjȳ〈δΨi(y), δΨj(ȳ)〉 (42)

= max
α

∑
i,y 6=yi

αiy −
1

2

∑
i,y 6=yi
j,ȳ 6=yj

αiyαjȳK (43)

where αiy ≥ 0. The (41) is by 4th of KKT conditions; Since there is inner product of mapping function
δΨ(x,y), we can use K((x,y), (x′,y′)) (a kernel) which is positive definite matrix to replace the inner
product to reduce the computation complexity.

Question: K is used to replace inner product of one mapping δΨ or two mappings φ(δΨ)? If for one map-
ping , does it mean we do not need to design the function Ψ ?

For soft-margin optimization with slack rescaling and linear penalties (SVM4s1 ), we can also formulate its
dual problem

max
α

min
w,ξ

L(w, α) s.t. ξi ≥ 0; αiy≥0 ∀i,∀y∈Y \yi
(44)

= max
α,β

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi −
n∑
i=1

∑
y 6=yi

αiy[〈w, δΨi(y)〉 − 1 +
ξi

4(yi,y)
]− βiξi s.t. βi ≥ 0 (45)

If we take derivative with respect to ξi, we will get the implicit constraint

C

n
−

∑
i,y 6=yi

αiy ·
1

4(yi,y)
− βi = 0 (46)

since βi ≥ 0, we will explicit constraints

C

n
−

∑
y 6=yi

αiy ·
1

4(yi,y)
≥ 0 ∀i

∑
y 6=yi

αiy ·
1

4(yi,y)
≤ C

n
∀i

n
∑
y 6=yi

αiy
4(yi,y)

≤ C ∀i

(47)
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We can arrange the terms and apply the βi = C
n −

∑
i,y 6=yi

αiy · 1
4(yi,y) in formula (45), then we get

dual problem of SVM4s1 as

max
α,β

min
w,ξ

L(w, α, β) (48)

= max
α,β

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi −
n∑
i=1

∑
y 6=yi

αiy[〈w, δΨi(y)〉 − 1 +
ξi

4(yi,y)
]−

∑
i=1

βiξi (49)

= max
α,β

min
w,ξ

1

2
‖w‖2 −

n∑
i=1

∑
y 6=yi

αiy[〈w, δΨi(y)〉+ 1] +
C

n

n∑
i=1

ξi −
∑
i

∑
y 6=yi

αiyξi
4(yi,y)

−
∑
i=1

βiξi︸ ︷︷ ︸
=0

(50)

= max
α,β

min
w,ξ

1

2
‖w‖2 −

n∑
i=1

∑
y 6=yi

αiy[〈w, δΨi(y)〉+ 1] (51)

= max
α

1

2
‖w∗‖2 −

n∑
i=1

∑
y 6=yi

αiy[〈w∗, δΨi(y)〉 − 1] (52)

= max
α

1

2
‖
∑
j

∑
y∈Y \yj

αjȳδΨj(ȳ)‖2 −
∑
i

∑
y∈Y \yi

αiy[〈
∑
j

∑
ȳ∈Y \yj

αjȳδΨj(ȳ), δΨi(y)〉 − 1] (53)

= max
α

∑
i,y 6=yi

αiy −
1

2

∑
i,y 6=yi
j,ȳ 6=yj

αiyαjȳ〈δΨi(y), δΨj(ȳ)〉 (54)

= max
α

∑
i,y 6=yi

αiy −
1

2

∑
i,y 6=yi
j,ȳ 6=yj

αiyαjȳK (55)

same dual objective but with extra constraints

n
∑
y 6=yi

αiy
4(yi,y)

≤ C ∀i

We can also apply similar procedures to other variant primal problems to get their dual problems.

8 Algorithm

This algorithm uses a cutting plane method, which is to iteratively tighter the relaxations of the original
problem. Solving the dual QP problem is more feasible than the primal QP problem, because
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• it depends on inner products in the joint feature space defined by Ψ, hence allowing the user of kernel
functions, and we don;t need to design the function Ψ

• the constraint matrix of the dual supports a natural problem decomposition, since it is block diagonal,
where each block corresponds to a specific training instance, and each block has row size |Y | − 1
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