Technical Appendix

This Technical Appendix, a supplement to “Calibrated Non-
parametric Scan Statistics for Pattern Detection in Graphs”,
consists of:

e Appendix A, Additional Background on Nonparametric
Scan Statistics

e Appendix B, Additional Details of CNSS
e Appendix C, Additional Experimental Details
e Appendix D, Case Studies

A Additional Background on Nonparametric
Scan Statistics

Here we present additional background on nonparametric
scan statistics (Neill and Lingwall 2007; McFowland III,
Speakman, and Neill 2013; Chen and Neill 2014).

As we describe in the main paper, the fundamental prob-
lem that NPSSs solve is to find a subset of the data S, often
subject to additional constraints (such as connectedness in
the graph setting), and a corresponding significance level «,
such that the proportion of significant p-values (at level «)
in S is significantly higher than expected. Or equivalently,
if p-values are drawn uniformly on [0,1] under the null hy-
pothesis H, and under the alternative hypothesis H1(S) the
p-values in subset S are drawn with a higher than expected
proportion of low (significant) p-values, we wish both to
distinguish Hq from H;, thus detecting whether a signal is
present, and if so, to correctly identify the affected subset S.

More precisely, NPSSs optimize an objective function
F(S) = maxa<an., ® (o, No(S),N(S)), where O(-)
compares the observed number of significant p-values
N, (S) at level « to the expected number of significant
p-values E [N, (S)] = aN(S) under the null hypothesis
Ho. The expectation E [N, (S)] = aN(S) follows because,
under Hg, the current data from which the p-values are
generated is exchangeable with the historical data against
which the current data values are ranked, leading to p-values
that are asymptotically uniform on [0,1] under the null.
We discuss the Berk-Jones statistic ® 5 ;(+) in detail in Ap-
pendix A.1, and other variants of NPSS in Appendix A.3.

Critically, NPSSs optimize the significance level « be-
tween 0 and some constant aax < 1. As noted by McFow-
land III, Speakman, and Neill (2013), the purpose of maxi-
mizing over a range of « values is to ensure that the statistic
can reliably detect either a small number of highly signifi-
cant p-values or a larger number of moderately significant
p-values. If « was fixed at a high value, the statistic would
have poor detection performance in the former case; if «
was fixed at a low value, it would perform poorly in the lat-
ter case. However, maximization over « also presents a seri-
ous drawback for the uncalibrated scan: for large real-world
graphs, NPSSs select overly large values of o, contributing
to their failure to correctly identify the affected subgraph S.

A number of algorithms have been proposed to
optimize F(S) over connected subgraphs, including
DFGS (Speakman, McFowland III, and Neill 2015),
AdditiveScan (Speakman, Zhang, and Neill 2013),

NPHGS (Chen and Neill 2014), and ColorCoding (Ca-
dena, Chen, and Vullikanti 2019), but none of these ap-
proaches are both exact and scalable to large graphs. More-
over, calibration of NPSSs requires us to identify the sub-
graph with the largest number of significant p-values N,, for
each subgraph size N and each significance level o, rather
than a single highest-scoring subgraph, thus necessitating
our new (approximate) optimization algorithm described in
the main paper and in Appendix B.4 below.

Once the highest scoring subgraph, S* =
argmaxsey F'(S), has been identified, randomization
testing can be used to compute the statistical significance
of §*. To do so, a large number R of replica graphs are
generated under the null hypothesis, i.e., each replica graph
has the same structure as the original graph but all p-values
p; are drawn i.i.d. from Uniform|0,1]. The same search
procedure is used to identify the highest scoring subgraph
S for each replica graph » = 1...R, and the score
F(S8*) is compared to the distribution of replica scores
F(S™). To be significant at the standard 0.05 significance
level, F'(S*) must exceed the 95th percentile of the null
distribution. This standard approach corrects for multiple
testing, in that the family-wise error rate (probability of
detecting any false positive subgraphs if data is generated
under the null) is bounded by the nominal level (e.g., 0.05).
However, we note that it does not correct for miscalibration
across subgraph sizes N and significance levels «, in that
large, high-scoring subgraphs &* are likely to be detected
even when the true subset S is small or no signal is present.

Finally, as is typical in the scan statistics literature, we can
perform multiple cluster detection by repeated single cluster
detection. That is, after we detect the single highest-scoring
subgraph, and test it for statistical significance, we “remove”
that subgraph from the data in one of two ways, either as-
signing the p-value of each detected node as 1, or deleting
the detected nodes from the network structure. (The former
approach allows secondary clusters to overlap with the pri-
mary cluster, while the latter approach does not.) In either
case, we apply the same procedure to the updated network to
detect the new highest-scoring subgraph, compare the score
of this cluster to the significance threshold determined by
randomization testing, and repeat until no further significant
clusters are present. This statistical testing approach is con-
servative for the secondary clusters, and several variants of
the multiple cluster scan have been proposed to increase de-
tection power for secondary clusters (Zhang, Assuncao, and
Kulldorff, 2010; Li et al., 2011).

In the remainder of Appendix A, we present additional de-
tails on the fundamental modeling assumptions of the Berk-
Jones nonparametric scan statistic (Appendix A.1), compu-
tation of empirical p-values (Appendix A.2), other variants
of NPSS (Appendix A.3), and differences between NPSS
and the Gaussian scan approach of Reyna et al. (2021)
and Chitra et al. (2021) (Appendix A.4).

A.1 Fundamental modeling assumptions

In this section, we describe the fundamental modeling as-
sumptions of nonparametric scan statistics, following Mc-

Fowland III, Speakman, and Neill (2013), and focusing pri-
marily on the Berk-Jones (BJ) likelihood ratio statistic. Un-
like parametric scan statistics such as the Poisson and Gaus-
sian statistics (Kulldorff 1997; Neill 2009), NPSSs do not
assume that the raw data is drawn from any particular para-
metric distribution. Instead, the data is converted to empir-
ical p-values by ranking the current data against a refer-
ence distribution (e.g., historical values), as described in Ap-
pendix A.2. The assumption under the null hypothesis Hg
is that the current and historical data are exchangeable, and
thus, ranking the current data against the historical data (and
normalizing) will result in empirical p-values that are uni-
formly distributed on [0,1]. This also implies that, for any
significance level «, the probability that a given p-value is
significant (p; < «) is equal to .

Under the alternative hypothesis #;(S), NPSSs must
make some assumption about how the distribution of p-
values in subset S differs from the uniform distribution on
[0,1]. For the BJ statistic, the assumption under H1(S) is
that there exist some « and 3, where 0 < a < 8 < 1,
such that the probability that a given p-value p; € S is sig-
nificant (p; < «) is equal to S. This is typically framed
as an assumption that the distribution of p-values p; for
v; € § is piecewise constant. More precisely, we have
Ho : pi ~ Uniform[0,1] Vu; € V. Under H;(S), we
have p; ~ Uniform[0,«] with probability 8 and p; ~
Uniform|a, 1] with probability 1 — 3, Vv; € S, for § > «;
and p; ~ Uniform|0,1] Vuv; € V' \ S. Here the values of
both « and S are fit by maximum likelihood estimation.

The resulting generalized log-likelihood ratio scan statis-
tic can be written as:

) NS (1 — BNE)~Na(S)
F(S) = %13;(log aNa(8) (1 — a)N(SE)~Na(d)

= 1pax No(S) log (ﬁ> +(N(S) = N (8)) log (1 - 6) .

« l—«

Then plugging in the maximum likelihood estimate 5 =
N, (8)/N(S) and simplifying, we obtain:

No(S)

F(S) Inoz}xN(S) KL < NS) ,a) ,
where the Kullback-Liebler (KL) divergence is defined
as KL(a,b) = alog% + (1 — a)log1=%, if a > b,
and 0 otherwise. (Note that we use a one-sided form of
KL divergence throughout, since we care only about sub-
graphs with a higher than expected proportion of signif-
icant p-values.) Thus we can see that the score F'(S) =
max, Ppy(a, No(S), N(S)) is maximized over both and
S, identifying a subgraph S and significance level « for
which S has a higher than expected proportion of significant
p-values at level a.

The assumption of piecewise constant p-values under the
alternative hypothesis H;(S) is a relatively lightweight as-
sumption, in that all significant p-values at level a are
treated identically: for a given «, the precise value of each
p-value does not impact the score F(S), only whether or
not that p-value is less than «. The resulting log-likelihood

ratio statistic is equivalent to a log-likelihood ratio de-
fined in terms of the number of significant p-values at
level «. That is, the null hypothesis Hy can be written
as No(S) ~ Binomial(N(S),a) for all S, and the al-
ternative hypothesis H1(S) can be written as N, (S) ~
Binomial(N(S),) for § > «. Again, we must not only
optimize over (3, using the maximum likelihood estimate

B =]\Ii}*((g)), but also the significance level «, to identify

the highest-scoring subgraph S.

A.2 Computation of empirical p-values

As noted in Section 3 of the main paper, empirical p-values
p; for the nonparametric scan statistic are computed for each
graph node v; using the two-stage empirical calibration pro-
cess described by Chen and Neill (2014). We provide more
details on this process and explain why it follows that p-
values are asymptotically uniform on [0,1] under the null hy-
pothesis Hy. Assume that node v; has a current feature vec-

tor x; € RY and historical feature vectors {xgl)7 e ,XET) }.
Moreover, under the null hypothesis H(, we assume that the

current data is exchangeable with the historical data, i.e., x;

and xgl), ‘e 7XET) are all drawn from the same (unknown)
distribution.

We first consider the simplest case, in which each node v;
has only a single feature x;. In this case, the empirical cali-

bration process reduces to ranking the current feature value
(1 ... D
s by

x; against its historical values x,; , and normaliz-

ing, i.e.,

p; = 14+ 7 1{1}(‘“ > x;)
‘ 14T

Here we assume one-sided p-values (i.e., higher values of
x; correspond to lower, more significant p-values), but two-
sided p-values, or one-sided p-values where lower values of
x; are more significant, can be easily constructed as well.
See McFowland III, Speakman, and Neill (2013) for details.

Under the null hypothesis of exchangeability, it is
easy to see that p; is discrete uniform, taking on values
H%T, o7 » 1 with equal probabilities, and converges in
distribution to Uniform[0,1] as the number of historical
observations 1" becomes large. An alternative is to use p-
value ranges, as proposed by McFowland III, Speakman, and
Neill (2013), which guarantee uniform (rather than asymp-
totically uniform) p-values under the null. We also note that
an arbitrary reference set can be used in place of historical
data for node v;, in which case the assumption under # be-
comes exchangeability of the current observation with that
reference set. See Chen and Neill (2014) for details.

In the more general case where the feature vectors x; and

(

xit) have more than one feature, the two-stage empirical cal-
ibration process first ranks each feature value x;; against its
historical values xEtA), and computes a “first-stage p-value”
corresponding to each feature value as above:

t
L+ r 1{351('3') > wij}
1+T '

Dij =

A similar “first-stage p-value” is computed for each histori-
cal value:

t t’ t
) _ 1+ 1{3%‘ 2 xz('j)} + Zt’:l.“T,t’;ét 1{951(9') > ng)}

b;; 1+7T

Next, the two-stage empirical calibration process com-
putes the minimum (most significant) p-value for each fea-
ture vector:

Pi,min = NN P4 ,
J

(®)

pi,min

()

=minp;; .
J

And finally, it computes the “second-stage p-value”, using
the normalized rank of the minimum p-value p; min (here,
lower is more significant):

_ 1+ Et:l...T 1{p§7t1)nm S pi,min}
a 14T '

DPi

The exchangeability of the first-stage p-values p;; and

pZ(;), and the exchangeability of their minima p; min and

pgfilin, follow from the exchangeability of x;; and IS) under
the null, and thus the second-stage p-values are asymptoti-
cally uniform on [0,1] under H, as above. See Theorem 1
of Chen and Neill (2014) and Section 2.2 of McFowland III,
Speakman, and Neill (2013) for additional details.

The uniformity of p-values is critical since it follows that
the expected proportion of significant p-values for a ran-
domly selected connected subset under Hg is equal to the
significance level «. This is the basis for the NPSS approach
of comparing the observed proportion of p-values that are
significant at level « to the expected proportion of significant
p-values a. As we discuss in detail in the main paper and in
Appendix B.1 below, this uncalibrated NPSS approach fails
to adjust for the multiplicity of subgraphs, and thus we pro-
pose to calibrate « by replacing it with the expected maxi-
mum proportion of significant p-values o’ (N, «).

A.3 Variants of nonparametric scan

While we focused on the Berk-Jones (BJ) nonparametric
scan statistic, our calibration approach can easily be ap-
plied to other NPSSs such as Higher Criticism (HC) and
Kolmogorov-Smirnov (KS), since like BJ these statistics
can be written as the maximum (over « values from 0
to amax) of a scaled divergence ®(a, N,(S),N(S))
between the observed and expected proportion of signifi-
cant p-values at level . Some examples are provided below:

Berk-Jones:

By (o, Na(S), N(S)) = N(S) KL (Na(‘s) , a>)

Higher Criticism:

‘I)HC (aa Noz(S)v N(S)) -

Kolmogorov-Smirnov:

CI)KS (OZ, Na(s)v N(S)) =

Note that in each of these cases, we use a one-sided di-
vergence, since we only wish to detect subgraphs where the
observed proportion of significant p-values N, (S)/N(S) is
greater than o. We have defined the one-sided KL diver-
gence in Appendix A.l above, and for the other statistics
we simply set them to zero whenever N, (S)/N(S) < a.

Once the value of o/ (N,) = E[maxs.s|=n Na(S)/N]
has been computed for each N and «, this value can be
substituted for a in any of the above equations to obtain a
calibrated nonparametric scan statistic:

Calibrated Berk-Jones:
Popy(a,No(S),N(S))
= N(S)KL <JJ\:?(<S)) ,o (N(S), a)>
Calibrated Higher Criticism:
Pomc (o, No(S), N(S))
_ Nao(S) — o/ (N(S), a)N(S) ©)
VN(S)(N(S),a)(1 - a’(N(S),)

®)

Calibrated Kolmogorov—-Smirnov:

(I)CKS (Oz, Na(S), N(S))
— VNE) () - s

Our future work will evaluate the impact of calibration
on the detection performance of HC, KS, and other non-
parametric scan statistics, as well as exploring whether the
calibration approach can be adapted to other scan statistics
outside the NPSS family.

We note that the HC nonparametric scan statistic, de-
spite its interpretation as a Gaussian approximation of the BJ
likelihood ratio statistic, is distinct from the Gaussian scan
statistics described in the following subsection. HC does
not assume that individual p-values in S follow a (trans-
formed) mean-shifted Gaussian distribution under the al-
ternative hypothesis #1(S). The HC statistic (like BJ) is
based only on the number of significant p-values at level
o, which implicitly assumes that the pdf of the p-values is
piecewise constant. Rather, it is the number of significant
p-values N, (S) that is assumed to be Gaussian, as a large
sample Gaussian approximation to the Binomial distribu-
tion for N, (S) assumed by BJ. Assuming that the num-
ber of p-values N(S) is large, then by the Central Limit
Theorem, the number of significant p-values at level ¢,
Ny (S) ~ Binomial(N(S), o), converges in distribution
to Gaussian(alN(S),a(l — a)N(S)), and the HC statis-
tic is the z-score of N, (S) given this Gaussian distribution,
which is similar to a Wald test. Thus HC is a large-sample
Gaussian approximation to BJ, regardless of whether the in-
dividual p-values are Gaussian.

(10)

A.4 Differences between NPSS and Gaussian scan

As we note in the main paper, two recent papers (Reyna
et al. 2021; Chitra et al. 2021) investigate miscalibration of
scan statistics in the Gaussian setting, demonstrating that the
Gaussian scan statistic tends to identify subgraphs that are
much larger than the true anomalous subgraph, and present-
ing an approach (based on Gaussian mixture modeling) that
can reduce this bias. In this subsection we explain how our
nonparametric scan statistic setting is fundamentally differ-
ent than the Gaussian setting, resulting in a different source
of bias (miscalibration of the parameter o) and thus moti-
vating a different approach to correcting this bias, i.e., recal-
ibration of « using o/ (N, «).

First, we note that the typical use of the Gaussian scan,
assuming that the raw data follows a Gaussian distribution
and computing the likelihood ratio statistic based on this as-
sumption, differs from the nonparametric scan setting where
the raw data is converted to p-values that (because of the
assumption of exchangeability of current and historical ob-
servations) will be uniformly distributed on [0,1] under the
null hypothesis. Nonparametric scans do not rely on strong
distributional assumptions (like Gaussianity) of the raw data,
but rather assume that sufficient reference data (e.g., histor-
ical data) are available to convert the raw data to empirical
p-values (by ranking it against the reference data and nor-
malizing) as described in Appendix A.2 above.

However, the Gaussian scan approach of Reyna et al.
(2021) and Chitra et al. (2021) differs from this typical use in
that the raw data are first converted to p-values p; by ranking
and then converted to Gaussian z-scores z; by the Gaussian
probability integral transform, z; = CDF~*(1 — p;), where
CDF(-) assumes the standard normal distribution. The null
hypothesis H, is that z; ~ Gaussian(0,1) for all ver-
tices v;, while the alternative hypothesis H;(S) is that z; ~
Gaussian(u, 1) for v; € S and z; ~ Gaussian(0,1)
for v; € V \ S. Converting back to p-values, we can
write equivalently that p; ~ Uniform[0,1] under Ho, as
in the nonparametric scan, and p; ~ 1 — CDF(2;) where
z; ~ Gaussian(y,1) for v; € S under the alternative hy-
pothesis H1(S), where the parameter p is fit by maximum
likelihood estimation.

While this framing of the Gaussian scan leads to identi-
cal null hypotheses, with p-values uniformly distributed on
[0,1], the NPSS alternative hypothesis #1(S) is fundamen-
tally different from the Gaussian setting in two ways. First,
as derived in Appendix A.l above, the nonparametric scan
fits two parameters « (significance level of the subgraph)
and S (fraction of significant nodes in the subgraph) by max-
imum likelihood estimation, while the Gaussian scan fits
only the parameter . The additional parameter « is critical
to the NPSS setting for two reasons: (1) maximizing over a
range of significance levels « gives the nonparametric scan
high power to detect compact signals (a small number of
highly significant p-values), dispersed signals (a large num-
ber of slightly significant p-values), or anything in between;
and (2) as we show, miscalibration of the estimated propor-
tion N, /N across different « values leads to an incorrect
(overly large) choice of «, obscuring the true signal, but us-
ing the corrected o/ (N, a) = E[maxgsens|=n Na(S)/N]

in place of the uncorrected @ = E[N,(S)/N] solves this
problem. The previous approaches for calibrating the Gaus-
sian scan cannot solve this issue of miscalibration over «a,
nor is a Gaussian mixture modeling approach appropriate
when p-values do not follow a transformed Gaussian un-
der the null. On the other hand, as our experimental results
show, our new approach to calibrating NPSSs is effective re-
gardless of whether the signal is a (transformed) Gaussian
or piecewise constant p-values.

3500

2500

2000

1500

1000

-4 -2 ° 2 4

Figure 4: Examples of the difference in signal shape between
piecewise constant and transformed Gaussian p-values. Left
panel: histogram of p-values corresponding to a transformed
Gaussian signal (x = 0.3). Right panel: histogram of z-
scores corresponding to a piecewise-constant p-value signal.

A second fundamental difference is that, even for a given
value of «, the nonparametric scan assumes a qualitatively
different signal shape, i.e., piecewise constant rather than
transformed Gaussian p-values, under the alternative hy-
pothesis H1(S). As shown in the left panel of Figure 4, if
we plot the histogram of p-values corresponding to a trans-
formed mean-shifted Gaussian (with ¢ = 0.3 in our exam-
ple), we see that they are decreasing on the entire interval
[0,1], as opposed to the NPSS assumption of piecewise con-
stant p-values. Conversely, if we plot the histogram of z-
scores corresponding to the alternative hypothesis for the BJ
statistic (with 10% of p-values significant at o = .01 in our
example), as in the right panel of Figure 4, we see that the
distribution is neither Gaussian nor a mixture of Gaussians,
as the mixture component with low p-values is heavily left-
skewed, with a sharp cutoff of the right tail at the z-score
corresponding to a.

While a performance comparison of nonparametric and
(transformed) Gaussian scans is beyond the scope of this
paper, we note that the differing alternative hypotheses have
important implications as to what types of signals can be
detected. One might expect the transformed Gaussian scan
to have somewhat higher power if its modeling assumptions
are correct and the signals are in fact Gaussian. However,
certain signals (such as cases where the p-value distribution
is symmetric around p = 0.5) would not be detectable in the
Gaussian setting, while the nonparametric scans can detect
signals as long as there exist some (a, 8), where 8 > «,
such that Pr(p < o) = S.

In summary, the nonparametric scan statistics that we
consider here differ fundamentally from the (transformed)
Gaussian scans considered by Reyna et al. (2021) and Chi-
tra et al. (2021), both in their assumptions about the true
signal (distribution of p-values under /1) and in their max-
imization over a critical parameter, the significance level .

These differences motivate both our new empirical studies
to understand and quantify the miscalibration of « for the
(uncalibrated) nonparametric scan statistics, as well as our
new approach to correctly calibrate o.

B Additional Details of CNSS
B.1 Correctness of the calibration approach

As we discuss in detail in the main paper, the primary
source of miscalibration for NPSSs is the discrepancy be-
tween « and o'(N,). That is, for a given significance
level «, the expected proportion of significant nodes (at
level «) for a randomly selected subgraph under Hg is
equal to a. However, for a non-random subgraph that is
selected by maximizing the number of significant nodes,
arg maxsen:|s|=n Na(S), the expected proportion of sig-

nificant nodes]X;‘((g)) under H, called o/ (N,), is much

greater than «, as shown in Figure 1. Previous, uncalibrated
NPSS approaches do not account for this discrepancy be-
tween o’ and «, causing them to incorrectly detect large,
high-scoring subgraphs even when no signal is present, or
equivalently, these incorrectly detected subgraphs will ob-
scure a true signal with lower score. This motivates our de-
velopment of calibrated NPSS score functions that com-

pare the observed proportion of significant nodes JX?(ESS))
to o/ (N, «) rather than . Moreover, we observe that the
amount of discrepancy between o’ and « varies not only
with N and «, but also with the graph structure (including
its size and sparsity), thus motivating our decision to empir-
ically calibrate o/(V,) based on randomization testing.

In the discussion below, we consider the correctness of

using o/(N,a) = E [maXSEM:m:N N‘}\gs)] in place of
the expectation @ = E {]}[\}‘((g))} in NPSS. For example,

for the Berk-Jones score function @5 (@, N, (S), N(S)) =

N(S) KL (]X;‘(g),a), we instead define the calibrated

Berk-Jones score function, ®cpj(a, No(S),N(S)) =

N(S) KL (55 ' (N(S),).

We now present a more formal argument for the correct-
ness of calibration, followed by a numeric example showing
how the uncalibrated Berk-Jones statistic fails and why our
calibration approach corrects this issue.

First, we note that the objective function maxgsepm F'(S)
can be written as maxXye(1...|v|},a<ama 9(IV, @), Where

g(N,a) = max

SEM:|S|=N ®(a, Na(5), N)

is the maximum score over all subgraphs of size N
at significance level «. Since ®(«o, N,,N) is an in-
creasing function of N,, we can rewrite g(N,a) =
¢ (o, maxsen|s|=n Na(S), N). Now, we would like
g(N, a) to satisfy two intuitive properties if the null hypoth-
esis Hy is true: (i) g(V,) should be small for all N and
«a, and (ii) g(N, «) should be similar in magnitude across all
values of N and «. The first property makes it possible to
differentiate Ho from H1(S), since large values of g(V, o)

would obscure the true signal S. The second property pro-
vides similar detection power across different subgraph sizes
N and significance levels a.

However, the uncalibrated Berk-Jones statistic does not
satisfy either of these properties. For brevity, let h(N, a)
denote the maximum proportion of significant p-values in
a subgraph of size IV,

ma; Na(S)
X .
SeM:|S|=N N

Then under Hy, we have g(N,a) = N KL(h(N, o), a).
Replacing h(N,«a) with its expectation under the null,
o/(N,a), we obtain g(N,a) ~ N KL(c/(N,a),a). As
shown in Figure 1 and the numeric example below, the dis-
crepancy between o’ and «, and the resulting values of
g(N, «), are large, obscuring the true signal when one is
present. Moreover, g(N, «) is much larger for high values
of the significance level o and subgraph size N, leading to
the detection of overly large, incorrect subgraphs.

On the other hand, for the calibrated Berk-Jones statistic,
we have:

h(N,a) =

g(N,a) = N KL (max DalS)
SeM:|S|=N

(N, a)>

= N KL(h(N,a),E[h(N,a)]),

where the expectation assumes that H is true, and is com-
puted by averaging (N, o) = maxsen|s|=n N‘}\gs) over a
large number of instantiations of the graph G with p-values
drawn from the null distribution, p; ~ Uniform[0, 1]Vv; €
V. Thus if the null hypothesis Hg is true, the value of
h(N,«) for the real data is drawn from the same distribu-
tion as the null data, and then compared (using one-sided KL
divergence) to the expectation of that distribution o/ (V, @)
in order to compute the score g(N, o). From this, it is clear
that the scores g(NV,) will be close to zero under H,, di-
verging from zero only when the value of h(N,) happens
by chance to be greater than its expectation.

To more precisely quantify the impact of the variance of
h(N,«) on the score g(N, «), assuming that the null hy-
pothesis H, is true, we use a second-order Taylor expansion
of the KL divergence to obtain:

B NVar[h(N, a)]
~ 2a/(N,a)(1 - o/(N,a))’

where the variance is taken over instantiations of the graph
G with p-values drawn under the null distribution. We ob-

serve empirically that, for large IV, the variance of h(N, «)

under the null is approximated well by w, giving us

E[g(N,a)] =~ 3(1—a/(N, «)) !, which is small and slowly
decreases with V. For small N, we observe empirically that
Var[h(N, «)] is much smaller than w For example,
Var[h(N,a)] = 0 when o/ (N,) = 1. As a result, we ob-
serve scores g(N, a) that are close to zero (typically peak-
ing in the low single digits) for all /V and «, as illustrated in
Figure 5c. This observation has two important implications:
first, since the null scores are much lower than for the uncal-
ibrated BJ statistic, a true signal #;(S) can be more easily

E[g(N,a)]

detected and the true subgraph S more accurately identified.
Second, we no longer observe the biases toward large /N and
« which led the uncalibrated BJ statistic to detect large, in-
correct subgraphs.

Thus the calibrated BJ statistic corrects for the multiplic-
ity of subgraphs of a given size N, by comparing the ob-
served maximum value of N,(S) across all size-N sub-
graphs to the expectation of that maximum value under the
null. In doing so, it calibrates the statistic across all val-
ues of N and «, giving similar values of g(N,«) under
Ho. However, we note that calibration alone does not cor-
rect for the multiple testing resulting from maximization of
g(N,a)overall N € {1...|V|} and @ < upax. We must
still apply the standard randomization testing approach de-
scribed in Appendix A to compare the maximum calibrated
score maxsen I'(S) to the distribution of the maximum cal-
ibrated score under Hg, thus bounding the overall false pos-
itive rate.

Finally, we note that correcting the miscalibration of
NPSSs does not require an exact solution to the optimiza-
tion problem, i.e., maximizing N, (S) over subgraphs of
size N. Under H, the current and null data are exchange-
able, so for a given a, h(N,) ~ maxsewm:|s|=n N'}\SS)
will be distributed identically for the current and null data,
as long as the same approximation algorithm is used for
the current and null data. That is, we compare the observed
value of the (approximate) maximum proportion of signifi-
cant p-values, h(N,), to the expectation of h(N,) under
Ho, &' (N,), so g(N,a) =~ N KL(h(N, o), (N, a)) re-
mains well-calibrated. The downside of a using an approxi-
mate rather than exact search is some potential loss of detec-
tion power and accuracy under H(S), but our experiments
demonstrate that the approximate algorithm achieves high
detection performance across five large real-world datasets,
outperforming the uncalibrated scan and baseline methods
by a wide margin.

Motivating Example. As a concrete example of how the
uncalibrated BJ statistic fails, and how calibration solves
this problem, let us consider a single instantiation of the
WikiVote graph (|V| = 7,066) generated under H;(S).
The true subgraph S was generated using a random walk on
the graph structure, with |S| = 100 and a relatively strong
signal injected, such that 75% of the p-values in S are signif-
icant at o = .01. This corresponds to ¢ = 75 for the piece-
wise constant p-value simulations in Appendix C.5 below.
In this case, the uncalibrated BJ score of the true subgraph
at the significance threshold o = 0.01 can be computed as

N(S) KL (%(Eg),a) = 100 KL(0.75,0.01) ~ 289. Thus

the true subset S (into which the signal has been injected)
has a high BJ score, corresponding to the true significance
threshold o = 0.01.

However, another, much larger subset has an even higher
score, corresponding to a high significance threshold «.
More precisely, at the highest a value considered (o =
.09), the uncalibrated scan picks out a subgraph contain-
ing nearly all of the approximately 700 significant p-
values in the graph, plus some additional nodes needed

to connect them, resulting in a 900 node subgraph with
74.4% significant p-values. If this observed proportion
of 74.4% is compared to the 9% of significant p-values
that one would expect to see in a random subgraph at

a = .09, it would have an extremely high BJ score of
N(S) KL (]]V\;*(g%a) — 900 KL(0.744,0.09) ~ 1100,

and as a result, the uncalibrated scan incorrectly iden-
tifies this subgraph instead of the true subgraph. How-
ever, under Hg, for a graph of this size and structure, one
would expect to see some subgraph of this size N =
900 with about &’(900,0.09) = 69.9% significant p-
values. Then the calibrated score of that incorrect subgraph
(comparing the observed 74.4% to the expected 69.9%)

would be close to zero: N(S) KL (%‘((SS)) ,o/ (N(S), a)) =

900 KL(0.744,0.699) = 4.47, allowing a subgraph closer to
the true subgraph (with N = 202 and 73.3% of p-values sig-
nificant at o = .01, as compared to o’ (202, 0.01) = 0.347,
for a score of 62.26) to be found instead. Comparing this
subgraph to the true subgraph using the metrics in Ap-
pendix C.3 below, we compute precision = 0.72, recall =
0.69, and F-score = 0.70, while the subgraph found by the
uncalibrated scan had slightly higher recall (0.75) but much
lower precision (0.08) and F-score (0.15). This is why cali-
bration using o’ (N,) in place of « improves detection per-
formance: it prevents the scan from detecting large, incor-
rect subgraphs whose log-likelihood ratio score exceeds the
score of the true subgraph.

For additional clarity, we show examples of score com-
putation for the calibrated and uncalibrated BJ statistics
in Figure 5 and 6. Figure 5 is for an instantiation of the
WikiVote graph with no injected signal, such that all p-
values are uniform on [0,1], while Figure 6 is for the in-
stantiation of the Wik iVote graph with injected piecewise-
constant signal discussed above. For illustration, we con-
sider only @ = .01 (red lines) and o« = .09 (blue lines).
In each graph, the left panel shows the observed value

of h(N,a) = maxsewm:|s|=n N‘J}\(,‘S) as a function of NV,
shown as a dashed line, as compared to the expected value

o/(N,a) = E [maXSEM:\S\:N NF}\SS)

} under the null hy-

pothesis H(, shown as a solid line. As expected, when there
is no signal (Figure 5), the observed maximum matches
o’ almost exactly (very slight differences are visible when
zooming in on the graph), demonstrating that o is correctly
calibrated, and the resulting calibrated BJ score (right panel)
is close to zero. On the other hand, we note that the observed
maximum is much larger than «, and thus the resulting un-
calibrated BJ score (center panel) is very high. When the
signal is present (Figure 6), we see clear differences between
the observed maximum and o’ (N, «) (left panel), resulting
in a high calibrated score (right panel) that is maximized
at the true « value, & = .01, for a subgraph that closely
matches the true subgraph as described above. On the other
hand, for the uncalibrated scan, the score of the true sub-
graph at the true « value is exceeded by the score of the
much larger subgraph described above (center panel), at the
incorrect o = .09.

In summary, this example, along with the discussion

1.00 1000 * s *
- S2
2075 2 50 =
<050 = 500 S =001 = |} a=0.01
X 3 S a=0.09 R a=0.09
g ¥ 250 / s
* P
0.25 - S 3]
0.00 o Lol!
=Y 500 1000 0 500 1000 0 500 1000
N N N

(@)

(b)

©)

Figure 5: Example of calibrated versus uncalibrated score computation for the Wik iVote graph with p-values generated under
Ho. Red lines: o = .01. Blue lines: @ = .09. (a) Observed maximum value of N, /N (dashed line) and expected maximum
value o/ (N, a) (solid line). (b) BJ score of the uncalibrated scan statistic, comparing the observed N,, /N to the expected value
a. (c) BJ score of the calibrated scan statistic, comparing the observed N, /N to the expected maximum value o’ (N,).

—

1.00 Ak s600 X @=0.01
= " A = i @=0.09
=075 / 2 AN
= S40) | e
50.50 AT @=001| Z j
S A a=0.09 S / i
£ S T 220 | |
So2s /. S

4 S o S
=
0 500 1000 0 500 1000 0 500 1000
N N N

(a)

(b)

(©

Figure 6: Example of calibrated versus uncalibrated score computation for the WikiVote graph with piecewise constant p-
values generated under #;(S). Red lines: o = .01. Blue lines: o = .09. (a) Observed maximum value of N, /N (dashed line)
and expected maximum value o/ (N, @) (solid line). (b) BJ score of the uncalibrated scan statistic, comparing the observed
N, /N to the expected value «. (c) BJ score of the calibrated scan statistic, comparing the observed N, /N to the expected

maximum value o/ (N, o).

above, demonstrates how miscalibration can harm the detec-
tion performance of uncalibrated NPSSs, resulting in a very
large, incorrect detected subgraph, at an incorrect o value,
that swamps the true signal. However, when the uncalibrated
« value is replaced with the calibrated o' (N, «), the miscal-
ibration issue is solved, leading to substantially improved
detection performance for the calibrated scan.

B.2 Proofs of Theorems 1-2

Theorem 1. For each ¢ € {1,...,|V|}, let k. be the largest
ext-degree of a connected subgraph of size c. Then for any
N e {1,...,|V|} such that c < N < ¢+ ke, a lower bound
for Elmaxgen,|s|=n Na(S)] is: ca + min(kco, N — ¢).

Proof. We consider the size-N subgraph consisting of all
c nodes from the subgraph and N — ¢ nodes from the
neighbors. There are two cases. For ¢ < N < ¢ + ke,
we choose only significant nodes from the neighbors, so
the expected number of significant nodes for a given N is
ca+ (N —c¢).Forc+ kca < N < ¢+ ke, all significant
neighbors are included, and thus the expected number of sig-
nificant nodes for the given N is ca + k.. Thus we have
E[N,] = ca + min(k.a, N — ¢). O

Theorem 2. For an Erdos-Renyi (|V|,p) graph with aver-
age degree (k) = (|V| — 1)p, with high probability,

oo 03))

Proof. To find a lower bound on o’ given N and «, let Z =

N

%(1 — exp(—(k)%)). We note that Z < (k), since 1 —
exp(—z) < z for all non-negative x. Now there are two
cases.

Casel:If o > %, then the fraction of significant nodes «
is also greater than <Tl> Thus there exists w.h.p. a giant clus-
ter of size |V|Ps, where Py, = a(1 — exp(—(k)Px)) >
(1 — exp(—(k)Px)), consisting entirely of significant
nodes. Now we can see that P,, >

L(1— exp(— (k) %
N consisting entirely of significant nodes, i.e., o’ = 1 for
the given N and «.

Case2: If o < %, then mark all of the significant nodes
and fraction 1/12_;0‘ of non-significant nodes, so that the pro-

portion of marked nodes is 1/Z, and the probability that

N

o/ > min <1, —
V|

i N
since 3;
)), and thus there exists a cluster of size

N
v

a marked node is significant is Za. Since the fraction of

marked nodes - > <71>’ there exists w.h.p. a giant cluster

of size |V| P, where Ps, = £ (1 — exp(—(k)P)) = %,
consisting entirely of marked nodes. Thus there exists a clus-
ter of size N such that the fraction of significant nodes in

that cluster is Za = %(1 — exp(f(k>%)), ie,a >
%(1 - exp(—(kﬂ%)) for the given N and «. Combining

these two cases, we obtain the lower bound on o/, for all o
and N.]

B.3 Algorithm 1

As described in Section 4, Algorithm 1 searches for the
highest-scoring connected subgraph, argmaxs F'(S) =
arg maxs Pezs(a, No(S), N(S)). To do so, it steps over a
range of significance thresholds o € £, calling Algorithm 2
for each « value, and collecting the subgraph S with largest
Ny (S) foreach N € {1,---,|V|} and each o € L. These
subgraphs are then scored with the calibrated Berk-Jones
statistic ®cg s, and the subgraph with the highest score is re-
turned.

Algorithm 1: Anomalous Subgraph Detection via
Calibrated Non-parametric Scan Statistics

Input: Graph G = (V, £), X which contains all
historical feature observations of each node,
and a list of v denoted as L, i.e.,
£ =[0.001,---,0.009,0.01,---,0.09];
Output: A set of nodes S C V that form a connected
subgraph of G;

1 Compute empirical p-values p for all nodes based on
X, following the approach described in Chen and
Neill (2014).

2 fora e Ldo

3 Apply Algorithm 2 on graph G with empirical

p-values p and significance threshold «, to
collect a list of candidate subgraphs S and
corresponding N, (S) and N(S).
for each collected triplet (S, N,(S), N(S)) do
Compute the calibrated BJ scan statistic:

Depy (047Na(8)7N(S))

= N(S) X KL (]LO‘((SS)),Q’(N(S),Q))
(11)
where
o/ (N, a) = E [maXS:\S]L[:N No(S)] (12)
6 end

7 end
8 return S with the highest ®cz; (o, N, (S), N(S))

At line 1, we use the two-stage empirical calibration pro-
cedure described in (Chen and Neill 2014) to convert the
observed node features into a single p-value for each node

based on the historical node features. Note that the compu-
tation of these p-values is not the focus of the present work;
thus, in our simulated experiments on the five datasets, we
simulate the p-values directly (as discussed in Section 5)
rather than simulating the node features and computing p-
values from them. This is not only faster, but provides a more
natural way to measure the strength of the injected signal.

At line 2, we iterate over a list of significance thresholds
a. In our experiments, we used significance thresholds o €
{0.001, - --,0.009,0.01, - -- ,0.09}.

At line 5, the algorithm assumes that we have pre-
computed the o’ (N, o) values for each N and « under con-
sideration. To do so, there are two options. First, we could
use the randomization tests that apply Algorithm 2 on K
replicas of datasets under Hg to collect K number of N,
values for each N € {1,---,|V|} and @ € L. Then we
use the averaged N, to compute the o (N, «). We could
also replace the randomization tests with the lower bounds
of o/ (N,) as discussed in Section 4.2, which we describe
as the method CNSS+LowerBound.

In addition, we can also apply the core-tree decomposition
and tree compression steps described in Section 4.3 and Ap-
pendix B.5 to obtain a compressed core C and corresponding
p-values p, and then apply the algorithm on C and p to speed
up the search. The core-tree decomposition can be done just
once for a given graph (between lines 1 and 2), while the tree
compression is done separately for each « value (between
lines 2 and 3). This method is called CNSS+CoreTree.

B.4 Algorithm 2

As described in Section 4.1, for a given graph G with cor-
responding empirical p-values p for each node, and a given
significance threshold «, Algorithm 2 searches for the most
significant subgraph maxgsen,|sj=n Na(S) for each N €
{1,---,|V|}. The algorithm is a greedy merging approach,
which enables it to scale to large graph sizes but has the
drawback of not guaranteeing that the subgraph with maxi-
mum N, will be found.

At line 1: After we merge adjacent significant nodes,
the merged nodes have significance ratio equal to 1. Those
merged nodes S could be viewed as candidate detected sub-
graphs, and will be merged further to create larger candidate
subgraphs.

At line 2: We maintain the ordered list Z throughout the
algorithm, where Z is sorted by significance ratio first, high-
est to lowest. If two items in Z have the same significance
ratio, we sort them based on the merged node size N(S),
highest to lowest.

At line 4: Initially, all nodes in the list have the same sig-
nificance ratio of 1, so the merged node representing the
laggest subgraph of significant nodes will be the initial root

At line 8: We evaluate three merge options on the root ST
as follows:

1. If there exists a neighbor n of ST which contains some
or all significant p-values, merge n into ST

2. If there exists a non-significant neighbor n of ST which
is also adjacent to at least one other significant node,

Algorithm 2: Greedily Merge Graph and Estimate

max N, for N € {1,--- ,|V|}.
Input: graph G = (V,), p € [0,1]V], and
a€0,1].

Output: a set of (S, N (S), N(S)) triplets

1 Merge all adjacent significant nodes, and get a list of
merged nodes S, denoted as Z.

2 Sort the list Z by significance ratio N, (S)/N(S),
from highest to lowest, and breaking ties using
larger size N(S).

3 Initialize an empty list P to store (S, N, (S), N(S))
triplets.

4 Get the merged node S™ with the highest
significance ratio in Z.

5 Add (ST, N, (S8T), N(ST)) of the merged node ST
to P.

6 while length(Z) > 1 do

7 Select the merged node S” with the highest

significance ratio in Z as root.

8 Select and apply the best merge option among the

three options described below, to merge another

node into S7'.

9 if the best merge option is option 1 then

10 Add (8T, N, (ST), N(S8T)) of the merged
node ST to P.

1 end

12 end

13 Sort the list P by N(S) from highest to lowest.

14 previous_ratio < Ng(S)/N(S) of the first
element of P.

15 for each successive element (S, N, (S), N(S)) in list
P do

16 current_ratio < N,(S)/N(S).

17 if current_ratio> previous_ratio
then

18 ‘ previous_ratio < current_ratio

19 else

20 | Delete element (S, No(S), N(S)) from P.

21 end

22 end

23 return P

merge n into ST
3. Merge the highest-degree non-significant neighbor n into
T

Then we select and apply the option that leads to the high-
est significance ratio for the merged node among these three
options. If they result in same significance ratio, we use the
priority order 1 > 2 > 3.

At line 9: We also collect the (S, N, (S), N(S)) triplets
of the merged nodes after each merge of option 1, which
produces a list of (S, N, (S), N(S)) triplets where N(S) €
{1,---,|V|}. Only the largest N,, value for each N must be
kept. Note that we do not need to record the triplets formed
after option 2 or option 3 since no significant p-values have
been added to ST

The purpose of lines 13 - 22 is to remove sub-optimal
(8, No(S), N(S)) from P, as a subgraph with smaller sig-
nificance ratio N, (S)/N(S) and smaller size N (S) is guar-
anteed to have lower score.

We note that, as written, the algorithm only returns
(8, Nu(S),N(S)) for a subset of N values, Q C
{1,...,|V|}. For the original graph, these are the only val-
ues of N(S) for which the corresponding subgraph S could
have optimal score F'(S). For the replica graphs used in
randomization testing, we apply linear interpolation to es-
timate the N, for the remaining values of NV, thatis, N &€
{1,...,|V|}\ Q. Also, when we apply Algorithm 2 under the
null hypothesis for randomization tests, we only record the
(Na(8), N(S)) pairs, without recording S, to save memory
space.

B.5 Core-Tree Decomposition

We adopt the implementation of core-tree decomposition
from (Maehara et al. 2014). After we decompose the whole
graph into the core part C = (V¢, &) and tree part T =
(Vr, Er), we utilize an additional tree-compression step be-
fore applying Algorithm 2 on C.

Tree compression merges the significant nodes in each
single tree into an adjacent core node. We could conceiv-
ably optimize over each single tree to identify and merge the
highest scoring sub-tree, but this would be time-consuming
given the large number of trees resulting from the core-tree
decomposition. Instead, we use breadth-first tree search to
find and merge each significant sub-tree that is adjacent to
the core. If a significant tree node is adjacent to multiple core
nodes, then we merge this tree node into the most significant
adjacent core node. In order to achieve this, we first sort the
core nodes V¢ by p-value (lowest to highest), and also re-
move all non-significant tree nodes from the graph (this may
disconnect some of the significant tree nodes, which are re-
moved from the graph as well). We then iteratively select
the most significant core node in the sorted V¢ as the root
of breadth-first tree search until all remaining tree nodes Vr
are explored.

The time complexity of core-tree decomposition is
O(d|V| + |€|) where d denotes a user specified tree width,
and the time complexity of tree compression is mainly
on the sequence of breadth-first tree search, which has
O(|Vr| + |Er|), as well as the sorting of core nodes, which
has O(|V¢|log [Vel).

The impact of core-tree decomposition and tree compres-
sion is to substantially reduce the effective graph size down
to the size of the core, while keeping many of the significant
p-values in the trees. However, we note that there is a po-
tential trade-off to this computationally efficient approach.
Any significant tree node that is not adjacent to a core node,
and is not connected to the core by a path consisting only of
other significant nodes, will not be merged into the core and
therefore will not be part of the detected subgraph returned
by CNSS+CoreTree. In practice, however, we find that the
loss of accuracy from this approach is minimal, while the
speedup in runtime is substantial.

B.6 Time Complexity Analysis of CNSS

Since CNSS Algorithm 1 applies Algorithm 2 for each sig-
nificance threshold « under consideration, we focus on the
time complexity of Algorithm 2 first. Algorithm 2 includes
three main steps:

e Step 1 (line 1): merge adjacent significant nodes in the
graph;

e Step 2 (lines 2-12): greedily merge the whole graph ac-
cording to the three options as described in Appendix B.4
and record (S, N4 (S), N(S)) throughout the merge pro-
cess;

e Step 3 (lines 13-22): filter out recorded
(S8, N4(S),N(S)) with suboptimal N, (S) for the
corresponding N (S).

For step 1, the algorithm must iterate over all edges and
record all significant and non-significant neighbors for each
node. Therefore, the time complexity of step 1 is O(|V| +
|€]). The time complexity of step 2 is mainly based on
sorting and searching for the best merge option, which it-
erates over the root node’s neighbors. The sorting takes
O(|V|log|V|). For the first option of merge, we randomly
merge one significant neighbor. For the second and third op-
tions, they need to iterate over all neighbors of current root
node. Hence, the time complexity would be O(k|V|) where
k denotes the largest degree of a node in the network. The
overall time complexity of step 2 is O(k|V| + [V|log |V]).
For step 3, the time complexity is mainly on the sorting, thus
time complexity is O(|V|log|V|). Therefore, the overall
time complexity of the Algorithm 2 is O(k|V|+|V|log [V]).

For CNSS Algorithm 1, it applies Algorithm 2 for each
significance threshold a@ € L. For obtaining o/ (N, «) for
a given N and «, it requires us to apply Algorithm 2 on
K replicas of datasets under the null hypothesis, unless
the lower bound method is used in place of randomization
testing. Therefore, the time complexity is O(K|L|(k|V| +
[V|log|V])). As we note below, these K replicas can be run
in parallel, or alternatively, the lower bound approach avoids
the need for randomization testing; in either case, the time
needed to compute o’ (N, «) can be reduced by a factor of
K.

B.7 Implementation Details and Reproducibility

We performed all experiments on Linux servers with the
same hardware configuration (64-bit machines with In-
tel(R)Xeon(R) CPU E5-2680 v4 @ 2.40GHz and 251GB
RAM). We implemented the CNSS in Python, and the code
is accessible via the following link: https://bit.ly/2QTvDzM.

We set the random seed of each run under the al-
ternative hypothesis and null hypothesis as the run
index, and we used significance thresholds a €
[0.001,0.002, - - - ,0.009,0.01,---,0.09].

The implementation details of each baseline method used
in our evaluation are provided in Appendix C.2.

C Additional Experimental Details
C.1 Datasets

Five real-world networks were obtained from the Stan-
ford Network Analysis Project (SNAP) 3+# including 1)
Twitter: a social network in where every node is a user
and every edge represents a relation of follower and fol-
lowee, where we do not consider the edge direction and
thus treat the dataset as an undirected graph; 2) DBLP: a
co-authorship network where every author is represented by
anode, and two authors are connected if they publish at least
one paper together; 3) SlashDot: a technology-related
news social network in where every node is an user and
every link represents the friendship between two users; 4)
CondMat: Arxiv COND-MAT (Condensed Matter Physics)
collaboration network is from the e-print arXiv and covers
scientific collaborations between authors on papers submit-
ted to the Condensed Matter category. If an author 7 co-
authored a paper with author j, the graph contains a undi-
rected edge between 7 and j. If the paper is co-authored by &
authors, the co-authorship graph contains a completely con-
nected subgraph on these k£ nodes; and 5) WikiVote: the
network contains all the Wikipedia voting data from the in-
ception of Wikipedia until January 2008. Nodes in the net-
work represent Wikipedia users and a directed edge from
node ¢ to node j represents that user ¢ voted on user j. In our
experiments, we treat it as an undirected graph. The descrip-
tive statistics of all datasets are described in Table 2.

We have also tried different sizes of true subgraphs (up to
5% of |V]), and we only report one of them since they have
consistent relative performance of methods as our reported
results in the paper.

C.2 Details of Comparison Methods

We compare our proposed algorithm with six state of the art
methods for event detection and anomalous subgraph detec-
tion. These six methods are commonly used as baselines for
detection of anomalous subgraphs, and include:

e Linear Time Subset Scanning (LTSS) (Neill 2012) is an
efficient event detection algorithm in massive data sets,
where the event detection problem could be viewed as
a problem of finding the subset which maximizes some
score function. For score functions satisfying the LTSS
property (e.g., the Berk-Jones scan statistic), the subset
of data records which maximizes F'(S) can be found by
ordering the records according to some “priority” func-
tion and searching over groups consisting of the top-k
highest priority records, requiring a linear rather than
exponential number of subsets to be evaluated (Neill
2012). The time complexity of LTSS is O(|V|log|V)).
However, LTSS does not enforce the graph connectiv-
ity constraint and may produce a disconnected subset of
graph nodes. Thus we use the largest connected compo-
nent in the detected subset of nodes as the detected sub-
graph S. We obtained the code from the authors, and

3https://snap.stanford.edu/data/
“License information for these datasets is found at: https:/snap.
stanford.edu/snap/license.html

Table 2: Descriptive Statistics of Real-World Networks.

Dataset | Vertices [V| | Edges |£| | Density

| Core Vertices [Vc| | Core Density | True Nodes |S]

WikiVote 7,066 100,736 0.00403

CondMat 21,363 91,286 0.0004
Twitter 81,309 1,342,296 | 0.000406

SlashDot 82,168 504,230 0.000149
DBLP 317,080 1,049,866 | 0.0000208

1,823 0.0425 100
2,513 0.00487 200
17,337 0.0041 1,000
10,599 0.0046 1,000
22,354 0.00054 1,000

we use the BJ scan statistic as the objective to maxi-
mize. We iterate over the list of significance thresholds
a € {0.001,---,0.009,0.01,---,0.09} to find the max-
imum BJ score.

EventTree (Rozenshtein et al. 2014): is an event
detection algorithm, which defines an event to be a
connected subgraph of nodes in the network that are
close to each other and have high activity levels. Un-
like the other methods considered here, the objective
function of EventTree is not a log-likelihood ratio
statistic. Rather, the objective is to maximize Q(S) =
AW(S) — D(S), where W(S) = > .sw(v) mea-
sures the total node weight value of a subgraph S,
D(S) = 3 uesYves d(u,v) measures the dis-
tance value of subgraph &, and A is a normaliza-
tion coefficient. We optimized the code provided by
the authors with a more efficient PCST solver® that
reduces the time complexity from O(|V|*log|V|) to
O(|€]log|V|) but has identical detection performance.
Since we use the simulated p-values for other methods,
we use the reciprocal of the p-value as the node weight
for Event Tree. The parameter \ also controls the gran-
ularity of the detected event, and we tuned it over the list
[0.001,---,0.009,0.01,---,0.09].

ColorCoding (Cadena, Chen, and Vullikanti 2019): is
an unified framework for optimizing a large class of para-
metric and non-parametric scan statistics for networks
with connectivity constraints. It is the only baseline
method other than DFGS that provides a rigorous solu-
tion guarantee. The time complexity of ColorCoding
is O(2% - ek|€]| log(@)) for a (1 — €) approximate solu-
tion, where k is the effective solution size (Cadena, Chen,
and Vullikanti 2019). It is extremely expensive when & is
large. However, it provides additional, heuristic prepro-
cessing steps to reduce the graph size such that, empir-
ically, k¥ < 10 is sufficient to find good solutions. We
used the code provided by the authors and implemented
the approximation refinement based on suggestions from
the authors. We tuned the parameter refinement coeffi-
cient 8 over [0.1,---,0.9] for different signal strengths,
and ended up with 8 = 0.9 for u = 5, 5 = 0.8 for u = 4,
B =0"7forpu=3,5=0.6for u=2,and g = 0.5 for
= 1.5 which achieve the best performance. In addi-

SHegde, Chinmay, Piotr Indyk, and Ludwig Schmidt. “A fast,

tion, we set £ = 5 with 300 iterations as suggested by
the authors.

e Non-parametric Heterogeneous Graph Scan (NPHGS)
(Chen and Neill 2014): optimizes the original Berk-Jones
nonparametric scan statistic over connected subgraphs,
using a greedy growth heuristic. The nonparametric scan
statistics are free of distributional assumptions and can
be applied to anomalous connected subgraph detection in
heterogeneous graph data, in contrast to traditional para-
metric scan statistics (e.g., the Kulldorff statistic). The
time complexity of NPHGS is O(|V|?log |V|). We used
the code provided by the authors, and chose the BJ scan
statistic as the objective score to optimize with parameter
a € {0.001,---,0.009,0.01,---,0.09}.

e Additive Graph Scan (AdditiveScan) (Speakman,
Zhang, and Neill 2013): was proposed as an efficient
heuristic alternative to DEGS which can be used to iden-
tify the high-scoring (most positive) connected subsets
in a given graph structure with real-valued weights at
each node. This method stems from two facts that 1) ad-
ditive functions satisfy the LTSS property, which could
leverage DFGS, however, 2) computation time of DFGS
is exponential in the graph size. The time complexity
of Additivescan is O(|V|?y/]V]). We adopted the
implementation by the authors, and chose the BJ scan
statistic as the objective score to optimize with parame-
ter « € {0.001,---,0.009,0.01,---,0.09}.

e Depth First Graph Scan (DFGS) (Speakman, McFow-
land III, and Neill 2015): is a graph scan method that is
guaranteed to find the exact solution, however, the worst
case complexity of DFGS is exponential in the neigh-
borhood size k. If no pruning was performed, DFGS
would evaluate all connected subsets, requiring O(2¥)
run time; however, it is able to rule out many connected
subsets as provably suboptimal, reducing complexity to
O(q") for some constant 1 < ¢ < 2, where ¢ is de-
pendent on the proportion of subsets that are pruned.
We adopted the implementation by the authors directly
with suggested hyperparameters, and chose the BJ scan
statistic as the objective score to optimize with parameter
a € {0.001,---,0.009,0.01,---,0.09}.

C.3 Experimental Setup and Evaluation Metrics

For each of the five real-world graph structures enumer-
ated above, we simulate 200 runs of p-values generated

adaptive variant of the Goemans-Williamson scheme for the prize- under the null hypothes.is and 50 runs of p-values gener-
collecting Steiner tree problem.” Workshop of the 11th DIMACS ated under each of five different alternative hypotheses with
Implementation Challenge. Vol. 2, 2014. w € [1.5,2,3,4,5]. We run all algorithms on these 2250

graphs and record the detected subgraphs and their corre-
sponding scores, and then performance evaluations in terms
of detection power, precision, recall, and F-score are con-
ducted. Let R be the ground truth nodes in the anomalous
subgraph and let S be the detected subgraph.

e Detection power measures the ability of a method to dis-
tinguish between graphs with or without an affected sub-
graph. It is computed based on the following steps: 1)
compute BJ score for each detected subgraph; 2) for each
alternative run, we conduct a hypothesis test with signifi-
cance level o = 0.05 by setting p-value as the proportion
of null runs that have higher BJ score than the alternative
run; 3) compute the proportion of hypothesis tests (for
each method, for each real-world graph, for each signal
strength 1) that reject the null hypothesis.

e Precision is the ratio of the number of detected true posi-
tive nodes divided by the total number of detected nodes,
that is,

TRNS|
SI

e Recall is the ratio of the number of detected true positive
nodes divided by the number of nodes in true subgraph,
that is,

13)

Precision =

IRNS|
Rl

e F-score is the harmonic mean of precision and recall, that
is,

Recall = (14)

2-Precision-Recall
F-score = — . (15)
Precision + Recall

We note that precision, recall, and F-score are each av-
eraged over the 50 graphs created for a given signal
strength p.

C.4 Additional Experimental Results

We now present a detailed comparison of the CNSS
and baseline methods with respect to run time, detection
power, and detection performance (precision, recall, and F-
measure). Note that, for the larger datasets, we do not re-
port the run time and performance of some baseline methods
due to extremely long clock run time (over 2 weeks on 250
CPUs) to finish all experiments over 50 replicas of datasets
under the alternative hypothesis.

Run time. As shown in Table 3, not including the
pre-processing time needed to compute the distribution
of o/(N,a) for a given graph structure, our method
has competitive run time that is faster than NPHGS,
AdditiveScan, and DFGS, which is aligned with the time
complexity analysis. We also observe substantial speedups
(ranging from 2.6x for WikiVote to 28x for CondMat)
for CNSS+CoreTree as compared to CNSS without core-
tree decomposition. These timing results are not impacted
by the approach used to compute o’ (N,), i.e., calibration
by randomization tests versus calibration by lower bounds
versus no calibration.

However, as shown in Table 4, the total pre-processing
time needed to perform calibration by randomization testing

is large because the same search must be performed on a
large number K of replica datasets generated under the null
hypothesis Ho, thus multiplying the run time by K. We used
K = 200 for our experiments, thus substantially increasing
run time. However, we note that these null runs are entirely
independent and thus can be easily parallelized. Moreover,
this preprocessing step must only be performed once for a
given graph structure, and can be reused if the graph struc-
ture remains constant, for example, for daily monitoring of
disease cases with a graph structure defined by zip code ad-
jacency. Additionally, we observe that the use of core-tree
decomposition resulted in similar speedups, ranging from
2.4x for WikiVote to 28x on CondMat, on the replica
datasets. Most critically, the use of lower bounds in place
of randomization testing eliminates the need to generate and
search over the large number of replica datasets, resulting in
huge savings in preprocessing time. These speedups ranged
from 300x to 2000x as compared to randomization testing
with core-tree decomposition, assuming K = 200 and no
parallelization for the randomization tests.

Detection power. Table 5 compares the detection power
(i.e., the proportion of signals detected, at a fixed false posi-
tive rate of 0.05) for CNSS and baseline methods across the
five real-world datasets and varying signal strengths. Note
that several of the slower methods were not run for the
largest graphs due to excessive run times needed to perform
detection on the null graphs.

We observe that all three of the calibrated CNSS methods
(CNSS, CNSS+CoreTree, and CNSS+LowerBound)
achieve perfect detection power across all of the real-
world graphs and signal strengths considered. In contrast,
the uncalibrated CNSS methods and the baseline methods
have substantially reduced detection power for low signal
strengths, particularly on the smaller graphs (WikiVote
and CondMatter) which also had a smaller number of true
nodes generated under the alternative hypothesis ;. Inter-
estingly, even the uncalibrated CNSS methods outperformed
the baseline methods with respect to detection power; among
the baseline methods, EventTree and ColorCoding
tended to outperform LTSS, NPHGS, and AdditiveScan.

Detection performance. The detection performances are
shown in Table 6. The bold number indicates that method
is significantly better than other methods. Overall, our pro-
posed CNSS outperforms baseline methods under different
signal strengths p on the various network structures. Specif-
ically, the calibrated BJ score helps to precisely pinpoint the
true affected subgraph as the strength of signal increases.
The use of core-tree decomposition and lower bounds do
not have substantial effects on detection performance for
these five real-world datasets, while significantly reducing
run time. On the other hand, the baseline methods do not
have consistent performance over different values of ; with
different network structures. LTSS has the worst detection
performance, because it does not enforce the graph connec-
tivity constraints and thus picks out a subset of disconnected,
individually anomalous nodes that do not accurately reflect
the true affected subgraph. Event Tree has relatively good
performance on Twitter and SlashDot datasets when
the event signal is not strong. However, when event signal

Table 3: Run Time on All Datasets. The run time of our method is reported for 18 different « values using a single processor,
which could be parallelized to speed up the run time. We implement all discussed algorithms and perform the experiments on
Linux servers with the same hardware configuration (64-bit machines with Intel(R)Xeon(R) CPU E5-2680 v4 @ 2.40GHz and
251GB memory). Note that the run times for CNSS and CNSS+CoreTree do not include the pre-processing time required
to estimate o’ (N, «), and thus are independent of the calibration approach (randomization test versus lower bounds versus no

calibration).
Methods WikiVote Codeat Twitter Sla.shDot DBLP
Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.)
LTSS 21 24 619 243 1425
EventTree 23 25 179 186 1019
ColorCoding 5220 8295 66690 29790 124956
NPHGS 8912 52046 998624 496587 X
AdditiveScan 17950 123100 X X X
DFGS 22791 X X X X
CNSS 1771 43325 489624 447800 X
CNSS+CoreTree 685 1544 128812 45208 185053

Table 4: Preprocessing Time Comparison for the Computation of o’ (N, «). The run time of randomization testing is the run
time of a single CNSS run under H, times the number of replica datasets K, and we used K = 200 runs for our experiments.

Methods WikiVote Codeat T\fvitter SlgshDot DBLP
Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.)
RandomizationTest 1602 x K 28341 x K 299349 x K 375999 x K X
RandomizationTest+CoreTree 660 x K 1026 x K 107192 x K 40124 x K 147086 x K
LowerBounds 59 504 16094 9073 87832

is strong, the subgraph detected by EventTree includes
many noisy nodes around true nodes to reach a higher score,
thus dramatically harming precision; this pattern is also ob-
served for the other baseline methods, while our proposed
calibrated scan approach converges to both high precision
and high recall as the signal strength increases. DFGS has
relatively good performance when the graph is small, such
as CondMat data with a strong event signal, but does not
perform well on WikiVote and quickly becomes compu-
tationally infeasible for the larger graphs. ColorCoding,
AdditiveScan, and NPHGS have similar performance:
all of them suffer from the similar issue as EventTree
in that, when the event signal is strong, they include many
individually significant nodes that are not part of the true
affected subgraph, thus reducing precision and F-score.

In addition, we show the average performance (F-score)
over various signal strengths and network structures in Fig-
ure 7. We can see that CNSS, CNSS+CoreTree, and
CNSS+LowerBound have much better average perfor-
mance than all baselines, while CNSS without calibration
(CNSS+NoCalib) performs poorly.

These results demonstrate the advantage of the novel cali-
bration approach proposed here for precisely identifying the
true affected subgraph, as well as the utility of our core-tree
decomposition and lower bound approaches for enabling
scalability and computational feasibility for large graphs.

C.5 Results with piecewise constant p-values

Though the nonparametric scan statistics (calibrated or un-
calibrated) do not make any assumptions of Gaussianity, we
used Gaussian signals in our simulation experiments to show

that the calibrated NPSS formulation can achieve high de-
tection performance even when the injected signal does not
necessarily obey our specific modeling assumptions. Gaus-
sian mean-shift signals are simple, have a natural way of
measuring signal strength, and are frequently used in the
literature, e.g., by Reyna et al. (2021) and Chitra et al.
(2021). However, one might ask what happens when the
Berk-Jones NPSS modeling assumptions are precisely cor-
rect, and the resulting p-values are piecewise constant under
H1(S). Does the uncalibrated Berk-Jones statistic still fail to
detect these signals due to miscalibration, and does the cali-
brated BJ statistic still outperform competing approaches by
a wide margin?

To explore these questions, we performed additional
simulations using the WikiVote and CondMat datasets,
comparing the calibrated scans (CNSS, CNSS+CoreTree,
and CNSS+LowerBounds) with the uncalibrated scan
(CNSS+NoCalib) and the various baselines (LTSS,
EventTree, NPHGS, AdditiveScan, DFGS, and
ColorCoding) with respect to detection power, preci-
sion, recall, and F-score. As in the main evaluation, we
simulated the true subgraph S using a random walk with
size roughly 0.01|V| (see Table 2), and reported the aver-
age performance over 50 runs of simulations of true sub-
graphs and p-values, for each signal strength, on each net-
work structure. However, for these runs, we assumed piece-
wise constant p-values, where each p-value p; € S is drawn
from Uniform[0, 0.01] with probability ¢ - 0.01, and from
Uniform[0.01, 1] with probability 1 — ¢ - 0.01. Signal
strengths ¢ € {10, 25, 50, 75,100} were used for these sim-
ulations, and p-values outside subset S were drawn from

Table 5: Detection Power Comparison on Five Real World Datasets with Gaussian Signals.

WikiVote (;1 = 1.5)

WikiVote (p = 2)

WikiVote (u = 3)

WikiVote (= 4)

WikiVote (i = 5)

Methods Detection Power Detection Power Detection Power Detection Power Detection Power
LTSS 0.28 0.4 0.96 1.0 1.0
EventTree 0.6 0.94 1.0 1.0 1.0
ColorCoding 0.8 1.0 1.0 1.0 1.0
NPHGS 0.0 0.0 0.0 0.0 0.0
AdditiveScan 0.0 0.0 0.0 0.0 0.0
CNSS+NoCalib 0.94 1.0 1.0 1.0 1.0
CNSS+CoreTree+NoCalib 0.86 0.98 0.98 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0
Methods CondMat (¢ = 1.5) | CondMat (= 2) | CondMat (p = 3) | CondMat (. = 4) | CondMat (p = 5)
Detection Power Detection Power Detection Power Detection Power Detection Power
LTSS 0.3 0.68 1.0 1.0 1.0
EventTree 0.66 0.94 1.0 1.0 1.0
ColorCoding 0.0 0.8 1.0 1.0 1.0
NPHGS 0.0 0.1 0.72 0.96 1.0
AdditiveScan 0.32 0.36 0.36 0.36 0.38
CNSS+NoCalib 0.96 1.0 1.0 1.0 1.0
CNSS+CoreTree+NoCalib 0.86 1.0 1.0 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0
Methods Twitter (u = 1.5) Twitter (p = 2) Twitter (u = 3) Twitter (u = 4) Twitter (i = 5)
Detection Power Detection Power Detection Power Detection Power Detection Power
LTSS 0.0 0.0 0.0 1.0 1.0
EventTree 1.0 1.0 1.0 1.0 1.0
ColorCoding 1.0 1.0 1.0 1.0 1.0
NPHGS 0.0 0.0 0.0 0.02 0.34
CNSS+NoCalib 1.0 1.0 1.0 1.0 1.0
CNSS+CoreTree+NoCalib 1.0 1.0 1.0 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0
Methods SlashDot (11 = 1.5) | SlashDot (= 2) | SlashDot (u = 3) | SlashDot (1 = 4) | SlashDot (= 5)
Detection Power Detection Power Detection Power Detection Power Detection Power
LTSS 1.0 1.0 1.0 1.0 1.0
EventTree 1.0 1.0 1.0 1.0 1.0
ColorCoding 1.0 1.0 1.0 1.0 1.0
NPHGS 0.0 0.0 0.0 0.04 0.38
CNSS+NoCalib. 1.0 1.0 1.0 1.0 1.0
CNSS+CoreTree+NoCalib 1.0 1.0 1.0 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0
Methods DBLP (u = 1.5) DBLP (u = 2) DBLP (u = 3) DBLP (u = 4) DBLP (u = 5)
Detection Power Detection Power Detection Power Detection Power Detection Power
LTSS 1.0 1.0 1.0 1.0 1.0
EventTree 0.98 1.0 1.0 1.0 1.0
ColorCoding 1.0 1.0 1.0 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0

Table 6: Detection Performance Results (Average Precision, Recall, and F-score) on Five Real World Datasets with Gaussian
Signals. The bold number indicates that method has a significantly higher F-score than the other methods. Statistical significance
is computed using paired t-tests (p < 0.05).

Methods WikiVote (¢ = 1.5) WikiVote (1 = 2) WikiVote (1 = 3) WikiVote (1 = 4) WikiVote (1 = 5)
Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score
LTSS 0.023 | 0.144 | 0.039 | 0.024 | 0.154 | 0.042 | 0.022 | 0.145 | 0.039 | 0.024 | 0.157 | 0.042 | 0.024 | 0.155 | 0.041
EventTree 0.035 | 0.041 | 0.037 | 0.041 | 0.060 | 0.049 | 0.036 | 0.075 | 0.049 | 0.034 | 0.083 | 0.048 | 0.026 | 0.244 | 0.047
ColorCoding 0.074 | 0.664 | 0.132 | 0.111 | 0.801 0.195 | 0.145 | 0953 | 0.252 | 0.174 | 0.997 | 0.297 | 0.244 | 0.920 | 0.376
NPHGS 0.144 | 0.547 | 0.227 | 0.185 | 0.751 | 0.297 | 0.216 | 0.946 | 0.351 | 0.225 | 0.997 | 0.367 | 0.346 | 0.949 | 0.432
AdditiveScan 0.143 | 0.547 | 0227 | 0.185 | 0.751 | 0.296 | 0.216 | 0.946 | 0.351 | 0.225 | 0.997 | 0.367 | 0.226 | 1.000 | 0.368
DFGS 0.154 | 0.523 | 0.235 | 0.204 | 0.703 | 0.311 0.206 | 0.804 | 0.325 | 0.219 | 0.836 | 0.343 | 0.203 | 0.800 | 0.321
CNSS+NoCalib 0.068 | 0.628 | 0.123 | 0.087 | 0.802 | 0.156 | 0.102 | 0.959 | 0.184 | 0.106 | 0.998 | 0.191 | 0.106 | 1.000 | 0.192
CNSS+CoreTree+NoCalib | 0.073 | 0.652 | 0.132 | 0.091 | 0.813 | 0.163 | 0.105 | 0.960 | 0.189 | 0.109 | 0.998 | 0.197 | 0.110 | 1.000 | 0.198
CNSS+CoreTree 0.233 | 0.400 | 0.265 | 0.285 | 0.641 | 0373 | 0.752 | 0.578 | 0.601 | 0.923 | 0.803 | 0.858 | 0.968 | 0.965 | 0.966
CNSS+LowerBound 0.213 | 0.233 | 0.218 | 0.360 | 0.379 | 0.361 | 0.737 | 0.567 | 0.630 | 0.891 | 0.810 | 0.847 | 0.951 | 0.967 | 0.958
CNSS 0.232 | 0.401 0.257 | 0.289 | 0.645 | 0.372 | 0.706 | 0.604 | 0.583 | 0.921 | 0.803 | 0.858 | 0.965 | 0.965 | 0.965
Methods CondMat (1 = 1.5) CondMat (p = 2) CondMat (p = 3) CondMat (p = 4) CondMat (p = 5)
Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score
LTSS 0.017 | 0.083 | 0.029 | 0.018 | 0.090 | 0.030 | 0.018 | 0.094 | 0.031 0.019 | 0.096 | 0.032 | 0.017 | 0.088 | 0.029
EventTree 0.014 | 0.204 | 0.027 | 0.015 | 0.216 | 0.028 | 0.014 | 0.208 | 0.026 | 0.014 | 0.209 | 0.026 | 0.014 | 0.214 | 0.027
ColorCoding 0.352 | 0.074 | 0.094 | 0.169 | 0.564 | 0.228 | 0.254 | 0.899 | 0.379 | 0.255 | 0.894 | 0.388 | 0.313 | 1.000 | 0.470
NPHGS 0.203 | 0.416 | 0.272 | 0.245 | 0.626 | 0.351 | 0.304 | 0.939 | 0459 | 0.315 | 0.995 | 0478 | 0.345 | 0.999 | 0.501
AdditiveScan 0.202 | 0478 | 0.283 | 0.247 | 0.675 | 0.361 | 0.286 | 0.945 | 0.439 | 0.306 | 0.995 | 0.467 | 0.304 | 1.000 | 0.467
DFGS 0.459 | 0.078 | 0.132 | 0.616 | 0.193 | 0.290 | 0.819 | 0.656 | 0.725 | 0.861 | 0.937 | 0.897 | 0.866 | 0.995 | 0.926
CNSS+NoCalib 0.045 | 0.629 | 0.084 | 0.056 | 0.779 | 0.104 | 0.068 | 0.957 | 0.126 | 0.070 | 0.997 | 0.132 | 0.070 | 1.000 | 0.132
CNSS+CoreTree+NoCalib | 0.057 | 0.620 | 0.105 | 0.071 | 0.779 | 0.130 | 0.086 | 0.958 | 0.158 | 0.089 | 0.995 | 0.163 | 0.089 | 0.999 | 0.164
CNSS+CoreTree 0.235 | 0.326 | 0.248 | 0.334 | 0.484 | 0.383 | 0.533 | 0.654 | 0.560 | 0.883 | 0.782 | 0.824 | 0.932 | 0.890 | 0.905
CNSS+LowerBound 0.078 | 0451 | 0.132 | 0.115 | 0.609 | 0.193 | 0.267 | 0.825 | 0.394 | 0.883 | 0.833 | 0.857 | 0.909 | 0.975 | 0.941
CNSS 0.258 | 0.361 0.278 | 0.340 | 0.563 | 0.408 | 0.735 | 0.685 | 0.687 | 0.916 | 0.821 0.866 | 0.985 | 0.974 | 0.979
Methods Twitter (© = 1.5) Twitter (1 = 2) Twitter (1 = 3) Twitter (u = 4) Twitter (1 = 5)
Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score
LTSS 0.075 | 0.726 | 0.136 | 0.084 | 0.829 | 0.152 | 0.096 | 0.974 | 0.175 | 0.098 | 0.998 | 0.178 | 0.098 | 0.999 | 0.179
EventTree 0.222 | 0.283 | 0.249 | 0.318 | 0.449 | 0.371 | 0.454 | 0.790 | 0.577 | 0.502 | 0.962 | 0.660 | 0.510 | 0.997 | 0.675
ColorCoding 0.060 | 0.661 0.109 | 0.084 | 0.783 | 0.153 | 0.114 | 0.957 | 0.204 | 0.136 | 0.997 | 0.239 | 0.153 | 1.000 | 0.265
NPHGS 0.110 | 0.553 | 0.183 | 0.136 | 0.737 | 0.230 | 0.166 | 0.951 | 0.282 | 0.172 | 0.996 | 0.294 | 0.172 | 1.000 | 0.293
CNSS+NoCalib 0.063 | 0.601 | 0.114 | 0.079 | 0.764 | 0.144 | 0.097 | 0.954 | 0.177 | 0.101 | 0.996 | 0.184 | 0.102 | 0.999 | 0.185
CNSS+CoreTree+NoCalib | 0.071 | 0.617 | 0.127 | 0.088 | 0.774 | 0.158 | 0.106 | 0.957 | 0.192 | 0.111 | 0.996 | 0.199 | 0.111 | 0.999 | 0.200
CNSS+CoreTree 0.137 | 0496 | 0.215 | 0.198 | 0.662 | 0.305 | 0.788 | 0.502 | 0.613 | 0.895 | 0.821 | 0.856 | 0.923 | 0.972 | 0.947
CNSS+LowerBound 0.150 | 0.264 | 0.181 | 0.260 | 0.378 | 0.302 | 0.725 | 0.515 | 0.599 | 0.909 | 0.819 | 0.861 | 0.957 | 0.972 | 0.964
CNSS 0.137 | 0491 | 0.211 0.167 | 0.701 | 0.267 | 0.728 | 0.508 | 0.579 | 0.880 | 0.820 | 0.849 | 0.910 | 0.972 | 0.940
Methods Slashdot (1 = 1.5) Slashdot (11 = 2) Slashdot (u = 3) Slashdot (u = 4) Slashdot (1 = 5)
Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score
LTSS 0.099 | 0.663 | 0.173 | 0.116 | 0.823 | 0.203 | 0.130 | 0.973 | 0.229 | 0.133 | 0.998 | 0.234 | 0.132 | 0.999 | 0.234
EventTree 0.264 | 0.312 | 0.285 | 0.456 | 0.482 | 0.410 | 0.476 | 0.810 | 0.599 | 0.527 | 0.967 | 0.682 | 0.526 | 0.996 | 0.689
ColorCoding 0.077 | 0.713 | 0.140 | 0.112 | 0.797 | 0.197 | 0.145 | 0.959 | 0.251 0.172 | 0.997 | 0.293 | 0.196 | 1.000 | 0.327
NPHGS 0.153 | 0.539 | 0.238 | 0.186 | 0.731 | 0.296 | 0.215 | 0.949 | 0.351 | 0.223 | 0.996 | 0.364 | 0.222 | 1.000 | 0.363
CNSS+NoCalib. 0.063 | 0.693 | 0.116 | 0.074 | 0.822 | 0.136 | 0.086 | 0.965 | 0.159 | 0.089 | 0.997 | 0.164 | 0.089 | 0.999 | 0.165
CNSS+CoreTree+NoCalib | 0.078 | 0.709 | 0.141 0.091 | 0.831 0.164 | 0.104 | 0.968 | 0.189 | 0.108 | 0.997 | 0.195 | 0.108 | 0.999 | 0.195
CNSS+CoreTree 0.157 | 0.529 | 0242 | 0.192 | 0.720 | 0.303 | 0.591 | 0.672 | 0.629 | 0.886 | 0.829 | 0.857 | 0.905 | 0.971 | 0.937
CNSS+LowerBound 0.070 | 0.655 | 0.127 | 0.086 | 0.786 | 0.155 | 0.716 | 0.541 0.609 | 0.873 | 0.829 | 0.850 | 0.891 | 0.972 | 0.930
CNSS 0.159 | 0.528 | 0.245 | 0.193 | 0.722 | 0.304 | 0.587 | 0.678 | 0.629 | 0.872 | 0.829 | 0.850 | 0.901 | 0.971 | 0.935
Methods DBLP (u = 1.5) DBLP (= 2) DBLP (1 = 3) DBLP (= 4) DBLP (= 5)
) Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score
LTSS 0.055 | 0.565 | 0.100 | 0.073 | 0.777 | 0.134 | 0.087 | 0.968 | 0.159 | 0.089 | 0.998 | 0.164 | 0.089 | 1.000 | 0.164
EventTree 0.081 | 0.357 | 0.132 | 0.119 | 0.538 | 0.194 | 0.174 | 0.834 | 0.288 | 0.198 | 0.972 | 0.329 | 0.203 | 0.998 | 0.340
ColorCoding 0.056 | 0435 | 0.100 | 0.104 | 0.656 | 0.180 | 0.152 | 0.943 | 0.261 0.179 | 0.996 | 0.304 | 0.205 | 1.000 | 0.340
CNSS+CoreTree+NoCalib | 0.022 | 0.623 | 0.043 | 0.028 | 0.775 | 0.054 | 0.034 | 0.955 | 0.066 | 0.035 | 0.994 | 0.068 | 0.035 | 0.995 | 0.068
CNSS+CoreTree 0.135 | 0.265 | 0.179 | 0.190 | 0.448 | 0.267 | 0.355 | 0.560 | 0.435 | 0.550 | 0.821 0.659 | 0.831 | 0.949 | 0.886

Average Performance (F-score) Comparison over
Various Signal Strengths and Network Structures

Average F-score
o o o o o
N wor U o
1 1 1 1 1

©
[
1

©
o
1

Figure 7: We compare the average performance (F-score) over various signal strengths and network structures to mimic the
various real-world scenarios. We performed two-sample paired t-tests between each baseline and CNSS, and we find that all
baselines have significantly lower performance than CNSS with p-value < 0.05.

Uniform[0,1] as usual. The results of these simulations are
shown in Tables 7 and 8.

We observe that the results for piecewise constant p-
values are highly consistent with those for Gaussian sig-
nals, demonstrating that it is miscalibration (not the shape
of the signal) that is causing the uncalibrated methods
to perform poorly. As we observed for the Gaussian sig-
nals, our proposed CNSS and CNSS+CoreTree outper-
formed all baselines and the uncalibrated CNSS+NoCalib
by a wide margin in terms of detection accuracy and de-
tection power, while the uncalibrated methods suffered
from low detection power for low signal strengths, and
low precision (and therefore low F-score) across all sig-
nal strengths. CNSS+LowerBounds consistently outper-
formed the uncalibrated scan and baseline methods for
WikiVote across all signal strengths, and for CondMat
for high signal strengths. For low signal strengths on
CondMat, CNSS+LowerBounds achieved higher detec-
tion power and recall than the uncalibrated scan and baseline
methods, but had lower precision and F-score.

Finally, we examined the mean and standard deviation of
the selected value of « for each method across the 50 runs
for each dataset and signal strength, noting that the signal
was injected with a true « value of 0.01. These results are
shown in Table 9. We observe that the uncalibrated scans
and baseline NPSS methods fail to identify the true « value,
instead consistently selecting the largest « value considered,
i.e., « = 0.09. In contrast, as the signal strength increases,
CNSS, CNSS+CoreTree, and CNSS+LowerBounds are

all able to reliably identify the value, o = 0.01, correspond-
ing to the true injected signal.

D Case Studies

D.1 Black Lives Matter Event Detection in
Twitter

In addition to the COVID-19 case study described in the
main paper, we also conduct another case study using tweets
with hashtag #BlackLivesMatter® collected from August
8th, 2014 to August 31st, 2015 to discover events related
to this social movement for racial justice during these 56
weeks. There are 442,077 unique tweets and 42,898 unique
hashtags in total. This Twitter dataset contains account user
names which may reveal personally identifiable informa-
tion. However, we pre-processed the data to remove the user
names, and only used the hashtags in each tweet and cor-
responding creation timestamps in our research. We gener-
ate a temporal graph with 100,123 nodes and 257,641 edges
based on the mentioned hashtags in tweets during these 56
weeks, in which each node represents a mentioned hashtag
in a particular week. We connect two nodes (two hashtags in
a week) if they were co-mentioned in at least one tweet that
week. We also add temporal edges between node v; ; (hash-
tag 7 in week ¢) and node v; ¢4 (hashtag ¢ in week ¢ + 1) if
both nodes have non-zero mentioned counts in each week.
In addition, we also add dummy nodes and edges to smooth

Shttps://dataverse. harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/IQ525U &version=1.0

Table 7: Detection Power Comparison on WikiVote and CondMat datasets, assuming piecewise constant p-values.

Methods WikiVote (¢ = 10) | WikiVote (¢ = 25) | WikiVote (¢ = 50) | WikiVote (¢ = 75) | WikiVote (¢ = 100)
Detection Power Detection Power Detection Power Detection Power Detection Power

LTSS 0.12 0.18 0.4 0.64 0.86
EventTree 0.12 0.2 0.24 0.42 0.4
ColorCoding 0.02 0.12 0.98 1.0 1.0
NPHGS 0.0 0.0 0.0 0.0 0.0
AdditiveScan 0.04 0.12 0.52 0.98 1.0
CNSS+NoCalib 0.12 0.44 0.86 0.98 1.0
CNSS+CoreTree+NoCalib 0.08 04 0.8 0.98 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0

Methods CondMat (¢ = 10) | CondMat (¢ = 25) | CondMat (¢ = 50) | CondMat (¢ = 75) | CondMat (g = 100)

Detection Power Detection Power Detection Power Detection Power Detection Power

LTSS 0.06 0.14 0.42 0.76 0.92
EventTree 0.06 0.1 0.28 0.38 0.54
ColorCoding 0.08 0.64 1.0 1.0 1.0
NPHGS 0.0 0.0 0.0 0.1 0.86
AdditiveScan 0.04 0.34 0.88 1.0 1.0
CNSS+NoCalib 0.12 0.36 0.84 0.98 1.0
CNSS+CoreTree+NoCalib 0.44 0.72 0.94 1.0 1.0
CNSS+CoreTree 1.0 1.0 1.0 1.0 1.0
CNSS+LowerBound 1.0 1.0 1.0 1.0 1.0
CNSS 1.0 1.0 1.0 1.0 1.0

Table 8: Detection Performance Results (Average Precision, Recall, and F-score) on WikiVote and CondMat datasets, as-
suming piecewise constant p-values. The bold number indicates that method has a significantly higher F-score than the other
methods. Statistical significance is computed using paired t-tests (p < 0.05).

Methods WikiVote (¢ = 10) WikiVote (¢ = 25) WikiVote (¢ = 50) WikiVote (¢ = 75) WikiVote (¢ = 100)
Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score

LTSS 0.016 | 0.100 | 0.027 | 0.015 | 0.101 | 0.027 | 0.015 | 0.104 | 0.027 | 0.015 | 0.107 | 0.027 | 0.015 | 0.110 | 0.027
EventTree 0.058 | 0.006 | 0.010 | 0.083 | 0.008 | 0.015 | 0.064 | 0.010 | 0.017 | 0.060 | 0.010 | 0.017 | 0.049 | 0.010 | 0.016
ColorCoding 0.045 | 0.346 | 0.080 | 0.068 | 0.408 | 0.117 | 0.105 | 0.586 | 0.178 | 0.148 | 0.779 | 0.249 | 0.200 | 1.000 | 0.333
NPHGS 0.051 | 0.159 | 0.077 | 0.089 | 0.299 | 0.137 | 0.142 | 0.528 | 0.223 | 0.187 | 0.761 0.300 | 0.227 | 1.000 | 0.369
AdditiveScan 0.051 | 0.160 | 0.078 | 0.089 | 0.299 | 0.137 | 0.142 | 0.528 | 0.223 | 0.187 | 0.761 | 0.300 | 0.226 | 1.000 | 0.369
DFGS 0.052 | 0.159 | 0.078 | 0.092 | 0.292 | 0.139 | 0.150 | 0.501 0.228 | 0.184 | 0.684 | 0.288 | 0.209 | 0.820 | 0.329
CNSS+NoCalib 0.034 | 0.303 | 0.061 0.046 | 0422 | 0.084 | 0.066 | 0.612 | 0.120 | 0.086 | 0.805 | 0.155 | 0.105 | 1.000 | 0.190
CNSS+CoreTree+NoCalib | 0.035 | 0.301 | 0.063 | 0.049 | 0.423 | 0.088 | 0.070 | 0.614 | 0.125 | 0.090 | 0.806 | 0.162 | 0.110 | 1.000 | 0.198
CNSS+CoreTree 0.169 | 0.164 | 0.102 | 0.467 | 0.211 0.275 | 0.616 | 0.471 0.522 | 0.714 | 0.730 | 0.718 | 0.651 | 0.992 | 0.773
CNSS+LowerBound 0.068 | 0.174 | 0.096 | 0.127 | 0.312 | 0.177 | 0.274 | 0.534 | 0.355 | 0.404 | 0.760 | 0.526 | 0.485 | 1.000 | 0.653
CNSS 0.163 | 0.246 | 0.107 | 0.464 | 0.218 | 0.283 | 0.608 | 0.473 | 0.521 | 0.679 | 0.736 | 0.695 | 0.595 | 0.992 | 0.730

Methods CondMat (¢ = 10) CondMat (¢ = 25) CondMat (¢ = 50) CondMat (¢ = 75) CondMat (¢ = 100)

Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score | Prec. | Rec. | F-Score

LTSS 0.009 | 0.092 | 0.017 | 0.009 | 0.093 | 0.017 | 0.009 | 0.095 | 0.017 | 0.009 | 0.097 | 0.017 | 0.009 | 0.099 | 0.017
EventTree 0.055 | 0.007 | 0.012 | 0.052 | 0.008 | 0.014 | 0.051 | 0.010 | 0.016 | 0.053 | 0.012 | 0.019 | 0.053 | 0.014 | 0.021
ColorCoding 0.036 | 0.120 | 0.055 | 0.076 | 0.228 | 0.113 | 0.139 | 0.460 | 0.213 | 0.204 | 0.730 | 0.318 | 0.273 | 1.000 | 0.429
NPHGS 0.052 | 0.061 0.055 | 0.103 | 0.154 | 0.122 | 0.193 | 0.398 | 0.258 | 0.261 | 0.697 | 0.379 | 0.316 | 1.000 | 0.480
AdditiveScan 0.048 | 0.076 | 0.059 | 0.100 | 0.182 | 0.128 | 0.184 | 0.433 | 0.257 | 0.247 | 0.715 | 0.367 | 0.298 | 1.000 | 0.459
DFGS 0.046 | 0.076 | 0.057 | 0.093 | 0.185 | 0.123 | 0.174 | 0.425 | 0.246 | 0.240 | 0.709 | 0.358 | 0.294 | 1.000 | 0.454
CNSS+NoCalib 0.021 | 0.289 | 0.039 | 0.030 | 0.418 | 0.056 | 0.044 | 0.614 | 0.081 0.056 | 0.799 | 0.105 | 0.070 | 1.000 | 0.131
CNSS+CoreTree+NoCalib | 0.025 | 0.275 | 0.046 | 0.036 | 0.398 | 0.066 | 0.053 | 0.592 | 0.097 | 0.069 | 0.790 | 0.127 | 0.086 | 1.000 | 0.159
CNSS+CoreTree 0.049 | 0.235 | 0.052 | 0.294 | 0.213 | 0.130 | 0.584 | 0.314 | 0.350 | 0.703 | 0.530 | 0.577 | 0.836 | 0.836 | 0.829
CNSS+LowerBound 0.021 | 0.286 | 0.040 | 0.031 | 0.416 | 0.057 | 0.057 | 0.609 | 0.102 | 0.218 | 0.783 | 0.315 | 0.422 | 1.000 | 0.591
CNSS 0.072 | 0.300 | 0.064 | 0.372 | 0.200 | 0.192 | 0.524 | 0.394 | 0.390 | 0.766 | 0.631 | 0.677 | 0.893 | 1.000 | 0.943

Table 9: Chosen « values for each method on WikiVote and CondMat datasets, assuming piecewise constant p-values. Note

that the Event Tree method, unlike the nonparametric scan approaches, does not optimize over .

Methods WikiVote (¢ = 10) | WikiVote (¢ = 25) | WikiVote (¢ = 50) | WikiVote (¢ = 75) | WikiVote (¢ = 100)
Mean SD Mean SD Mean SD Mean S Mean SD
LTSS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
EventTree - - - - - - - - - -
ColorCoding 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
NPHGS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
AdditiveScan 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
DFGS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+NoCalib 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+CoreTree+NoCalib | 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+CoreTree 0.040 0.038 0.014 0.010 0.014 0.012 0.011 0.006 0.010 0.001
CNSS+LowerBound 0.022 0.006 0.021 0.007 0.014 0.007 0.011 0.003 0.01 0
CNSS 0.040 0.038 0.014 0.010 0.014 0.012 0.011 0.006 0.01 0
Methods CondMat (¢ = 10) | CondMat (¢ = 25) | CondMat (¢ = 50) | CondMat (¢ = 75) | CondMat (¢ = 100)
Mean SD Mean SD Mean SD Mean SD Mean SD
LTSS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
EventTree - - - - - - - - - -
ColorCoding 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
NPHGS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
AdditiveScan 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
DFGS 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+NoCalib 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+CoreTree+NoCalib | 0.09 0 0.09 0 0.09 0 0.09 0 0.09 0
CNSS+CoreTree 0.077 0.025 0.044 0.034 0.019 0.018 0.018 0.017 0.011 0.004
CNSS+LowerBound 0.087 0.006 0.087 0.006 0.076 0.022 0.039 0.036 0.011 0.004
CNSS 0.055 0.037 0.02 0.02 0.021 0.019 0.019 0.017 0.01 0

the temporal transition. For example, a dummy node v; ; is
added into the graph if the hashtag ¢ is not mentioned in
week ¢ but is mentioned in both week ¢ — 1 and week ¢ + 1.
The temporal edges (v;+—1,v;¢) and (v; ¢, v; ¢41) are also
added into the graph.

Some co-mentioned hashtags may not be relevant to each
other. In order to detect a event with relevant hashtags, we
remove the edges between any two hashtags in a week if the
overlap coefficient pj; of the edge (v; ¢, v;,¢) is smaller than

a constant (i.e., pﬁj < 0.1). Overlap coefficient is defined as

#co-mention(tag_t, tag_j) in week ¢

o

Pij = (
(16)

The processed graph includes 100,123 nodes and 137,984
edges. The p-value of each node in the graph is computed
based on the rank of the expectation-based Poisson (EBP)
statistic (Neill 2012) divided by the total number of nodes.
For each node, we compute the EBP score as:

C

mP:Cbg§+B—C, (17

if C' > B, and EBP = 0 otherwise, where C is the observed
count (number of mentions of hashtag h in week w) and B

is a baseline assuming independence of hashtag counts and
time, i.e.,

(# tweets in week w) (# tweets mentioning hashtag h)

B =
total tweets

(18)

#tag_i + #tag_j - #co-mention(tag_i, tag_j)) in week t

We apply our CNSS method on this processed graph and
discover one subgraph that consists of 3,294 nodes. By ob-
serving the hashtags, we find that it is a large subgraph con-
necting multiple events related to the Black Lives Matter so-
cial movement. One reason for this seems to be that hashtags
related to certain events (such as the police-involved killings
of Mike Brown in Ferguson, MO and Eric Garner in New
York City) are used by the BLM movement not just at the
time those events occurred, but as a rallying cry throughout
the temporal duration of the data, perhaps to emphasize that
these abuses have persisted throughout time and are all tied
to the same underlying phenomena of societal injustice, in-
equity, and discrimination.

In order to narrow the focus of our detection method to
a specific event and validate our algorithm, we decrease the
value of aupax from 0.09 to a smaller value 0.008 empir-
ically, in where we could view the choice of a5 as in-
fluencing the granularity of a detected event. In the end,
we are able to obtain a significant event with much smaller
hashtag cluster as shown in Figure 8. To be fair to the
competing methods, we also attempt to shrink the gran-
ularity of detection by reducing a,a.x for these methods
as well. For LTSS, we shrink oy, from 0.09 to 0.008,
since it detects 6,024 nodes that maximize the BJ score
with apmax = 0.09. With o = 0.008, LTSS detects
676 nodes that spread over 54 weeks of data. Therefore,
we shrink the ap.x to 0.001 for LTSS and still detect
88 nodes that cross over 52 weeks and do not represent
any single, specific event. For Event Tree, the granular-
ity is controlled by the normalization coefficient A. We set

A € {0.001,---,0.009,0.01,---,0.09}. The smallest de-
tected subgraph or event has 130 nodes with A = 0.001 that
spread over 40 weeks, again failing to identify a single event
that is localized in time.

As shown in Figure 8, the hashtags detected by CNSS cor-
respond to the widespread protests related to two closely oc-
curring events: the grand juries’ decisions not to indict the
police officers responsible for the deaths of Eric Garner and
Mike Brown. On July 17, 2014, Eric Garner died in the New
York City borough of Staten Island after Daniel Pantaleo,
a New York Police Department (NYPD) officer, put him in
a prohibited chokehold while arresting him. On August 9,
2014, Mike Brown, an 18-year-old Black man, was fatally
shot by a white Ferguson police officer in the city of Fergu-
son, Missouri. On November 24, 2014, the St. Louis County
grand jury decided not to indict the police officer, and on
December 4, 2014, a Richmond County grand jury decided
not to indict Pantaleo. These decisions stirred massive public
protests and rallies in Ferguson, New York City, and Seattle
in the following weeks. As we can see in Figure 8, our de-
tected subgraph clearly captures the emergence, the peak,
and the end of this event using hashtags of tweets, while
the lower volumes of hashtag mentions from continued ref-
erences after these events are not included in the detected
subgraph.

In contrast, as shown in Table 10 and Figure 9,
EventTree and LTSS detect multiple small events indi-
cated by multiple peaks in the Figure 9 across long periods.
We annotate four peaks for Event Tree. The first event is
corresponding to the same event detected by CNSS in Fig-
ure 8. The second peak is around the Martin Luther King Jr.
Day on January 19, 2015. The third event is about the death
of Freddie Gray in Baltimore on April 19, 2015. The fourth
event is about the death of Sandra Bland in Texas on July
13, 2015. We also annotate five peaks for LTSS. The first
event is corresponding to the same event detected by CNSS
in Figure 8. The second peak contains multiple unrelated
hashtags, such as #Nigeria, #Grammys, #Oscars, and #Re-
claimMLK. The third peak corresponds to the shooting of
Tony Robinson on March 6, 2015, while the fourth and fifth
peaks correspond to the deaths of Freddie Gray and Sandra
Bland respectively.

These results demonstrate that, even when adjusting the
significance threshold « for finer event granularity, the com-
peting methods identify multiple individually anomalous
hashtag-week combinations and fail to detect a coherent
subgraph corresponding to a single event of interest.

D.2 COVID-19 Case Study

We now show visualizations of the top-1 detected sub-
graph for CNSS and two competing methods (LTSS and
EventTree) in Figures 10, 11, and 12, respectively. We
note that the overall spatial-temporal subgraphs identified
by CNSS and EventTree are connected, though the set
of spatial locations for any given time slice may not be con-
nected. LTSS does not enforce any connectivity constraints.

The connected subgraph identified by CNSS clearly
demonstrates the initial progression of the COVID-19 out-
break across the eastern United States between March-June

2020, with initial peaks in New York City and the north-
eastern U.S. that gradually spread into the southeastern U.S.
and Texas. In contrast, the connected subgraph identified by
EventTree and the subset identified by LTSS are dis-
persed over the entire country and do not clearly show the
progression of the outbreak’s peak.

We used the following county adjacency data to build
the spatial temporal network for the COVID-19 case
study: https://www.census.gov/geographies/reference-files/
2010/geo/county-adjacency.html, and statistics of the top-3
subgraphs detected by CNSS are presented in Table 11.

11/14/2014-11/20/2014 11/21/2014-11/27/2014 12/05/2014-12/11/2014
#Ferguson #Ferguson

#Ferguson
@ 2 Y
11/21/2014-11/27/2014 12/05/2014-12/11/2014 12/19/2014-12/25/2014
#MikeBrown #MikeBrown #Racist

A 4 AN J

p

12/05/2014-12/11/2014 12/19/2014-12/25/2014
#EricGarner #1CantBreath

& 4

p

12/05/2014-12/11/2014 12/12/2014-12/18/2014
#1CantBreath #1CantBreath

12/05/2014-12/11/2014 12/12/2014-12/18/2014
#ThisStopsToday #ThisStopsToday

12/12/2014-12/18/2014
#NYC

12/05/2014-12/11/2014 12/12/2014-12/18/2014
#Seattle #Seattle

Figure 8: Detected Subgraph in #BlackLivesMatter Tweets. Different colors indicate different weeks. Dashed lines indicate
crossing edges.

Table 10: BlackLivesMatter: Statistics of Detected Subgraphs by Different Methods

EventTree LTSS CNSS
periods 11/21/2014-08/20/2015 | 08/29/2014-08/13/2015 | 11/14/2014-12/25/2014
of weeks 40 52 6
of nodes 130 88 25
of hashtags 51 73 12

Table 11: COVID-19 Case Study: Statistics of Top-3 CNSS Detected Subgraphs. The calibrated BJ scores of these 3 subgraphs
are higher than all 100 calibrated BJ scores under H,.

N o N, o Calibrated BJ-Score
Ist Subgraph | 4707 | 0.09 | 4702 | 0.843 774.249
2nd Subgraph | 910 | 0.09 | 898 | 0.897 61.187
3rd Subgraph 100 | 0.03 100 | 0.708 34.595

number of hashtags

o

E~

N

o

0 10 20 30 40 50

offset of weeks

number of hashtags

EventTree

———
0 10 20 30
offset of weeks

number of hashtags

CNSS

offset of weeks

Figure 9: Detected Hashtags Distributions Over Time for LTSS, Event Tree, and CNSS.

Detected subgraph at week 9 (from 03/19/20 to 03/25/20) Detected subgraph at week 10 (from 03/26/20 to 04/01/20) Detected subgraph at week 11 (from 04/02/20 to 04/08/20)

. Gy
L 23
% ey w)
Detected subgraph at week 12 (from 04/09/20 to 04/15/20) Detected subgraph at week 13 (from 04/16/20 to 04/22/20) Detected subgraph at week 14 (from 04/23/20 to 04/29/20)
\"!
i i
i = =
. = %
P
“ e
Detected subgraph at week 15 (from 04/30/20 to 05/06/20) Detected subgraph at week 16 (from 05/07/20 to 05/13/20) Detected subgraph at week 17 (from 05/14/20 to 05/20/20)

Detected subgraph at week 18 (from 05/21/20 to 05/27/20) Detected subgraph at week 19 (from 05/28/20 to 06/03/20) Detected subgraph at week 20 (from 06/04/20 to 06/10/20)

Detected subgraph at week 21 (from 06/11/20 to 06/17/20) Detected subgraph at week 22 (from 06/18/20 to 06/24/20) Detected subgraph at week 23 (from 06/25/20 to 07/01/20)

Detected subgraph at week 24 (from 07/02/20 to 07/08/20)

Figure 10: CNSS Top-1 Detected Spatial-Temporal Connected Subgraph on COVID-19 Dataset

Detected subgraph at week 8 (from 03/12/20 to 03/18/20) Detected subgraph at week 9 (from 03/19/20 to 03/25/20) Detected subgraph at week 10 (from 03/26/20 to 04/01/20)

> 4 4
; ¥
= - Y i
'3 £ ‘ e
S
Detected subgraph at week 11 (from 04/02/20 to 04/08/20) Detected subgraph at week 12 (from 04/09/20 to 04/15/20) Detected subgraph at week 13 (from 04/16/20 to 04/22/20)
At - ¥ 0
Ll 1a - 3 ¥
il ¥ o
e
o By
ke
gl &
Detected subgraph at week 14 (from 04/23/20 to 04/29/20) Detected subgraph at week 15 (from 04/30/20 to 05/06/20) Detected subgraph at week 16 (from 05/07/20 to 05/13/20)
R
5 '\:
=

=y
.r !,\,F'i
R -

Detected subgraph at week 17 (from 05/14/20 to 05/20/20) Detected subgraph at week 18 (from 05/21/20 to 05/27/20) Detected subgraph at week 19 (from 05/28/20 to 06/03/20)

¢

Detected subgraph at week 20 (from 06/04/20 to 06/10/20) Detected subgraph at week 21 (from 06/11/20 to 06/17/20) Detected subgraph at week 22 (from 06/18/20 to 06/24/20)
e
Klrg Ar
* -~ _-E‘ "!:' . f i F
PR SR 5
- e | T 1
N T S
F\' 5 i ’;
? 3. 4
N
= T,
% 1Y
Detected subgraph at week 23 (from 06/25/20 to 07/01/20) Detected subgraph at week 24 (from 07/02/20 to 07/08/20)

Figure 11: LTSS Top-1 Detected Spatial-Temporal Connected Subgraph on COVID-19 Dataset

Detected subgraph at week 9 (from 03/19/20 to 03/25/20)

Detected subgraph at week 10 (from 03/26/20 to 04/01/20)

b]

Detected subgraph at week 11 (from 04/02/20 to 04/08/20)
¢

Detected subgraph at week 12 (from 04/09/20 to 04/15/20)

Detected subgraph at week 13 (from 04/16/20 to 04/22/20)

Detected subgraph at week 14 (from 04/23/20 to 04/29/20)

' o
- -

>

» - Nk LN
Ll T
S N e

1k !

e
e e i 4 ;f:&

p Gk

' 4aaD
Detected subgraph at week 15 (from 04/30/20 to 05/06/20) Detected subgraph at week 16 (from 05/07/20 to 05/13/20) Detected subgraph at week 17 (from 05/14/20 to 05/20/20)
e E RS
ey)
et
b i
s iRt w3
:
a R ;
) n‘ «

Detected subgraph at week 18 (from 05/21/20 to 05/27/20)

Detected subgraph at week 19 (from 05/28/20 to 06/03/20)

Detected subgraph at week 20 (from 06/04/20 to 06/10/20)

Detected subgraph at week 21 (from 06/11/20 to 06/17/20) Detected subgraph at week 22 (from 06/18/20 to 06/24/20)
A

Detected subgraph at week 23 (from 06/25/20 to 07/01/20)

Figure 12: EventTree Top-1 Detected Spatial-Temporal Connected Subgraph on COVID-19 Dataset

