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Introduction

● Detecting “hotspots” or anomalous patterns in graphs is an important but 
challenging problem. 

● Disease outbreak detection, network intrusion detection, etc. 
● Problem: anomalous connected subgraph detection. 
● Given a graph                     ,  

● each node                is associated with a feature vector                 .
● historical observation                       for each               . 

● Find a subgraph                          such that 
●               and                .
●       is connected in      .
●       is anomalous. 



Overview of Parametric Scan Statistics

● Parametric scan statistics:
○ likelihood ratio statistics of the hypothesis test.
○       : the                       of nodes      within a candidate subgraph        are 

generated by a parameterized background process. 
○       : the                      are generated by a different parameterized 

distribution (a localized anomalous process).  
○ Kulldorff Scan Statistic (Kulldorff 1997).
○ Positive Elevated Mean (Qian, Saligrama, and Chen 2014).
○ Expectation-based Poisson and Gaussian (Neill 2009).

● Achieve high detection power across many spatio-temporal graph datasets.
● Limitations:

○ strong parametric model assumptions. 
○ performance degrades when these models are incorrect.



Overview of Nonparametric Scan Statistics

● Nonparametric scan statistics (NPSSs):
○ likelihood ratio statistics of the nonparametric hypothesis test.
○ feature vector              empirical p-value      based on                          . 

○       :                                   for each node               within a candidate 
connected subgraph        .

○       : the empirical p-values follow a different distribution.
■ different distributions          different NPSSs are formulated.
■ piecewise constant distribution        Berk Jones (Berk and Jones 1979)
■ Higher Criticism (Donoho and Jin 2004) 
■ Kolmogorov-Smirnov (Massey Jr 1951)
■ Anderson-Darling (Eicker 1979)



Overview of Nonparametric Scan Statistics

● NPSS-based anomalous pattern (subgraph) detection:
○                                                                .
○ connected subgraph optimization problem:

○                                                                refers to the general form of NPSS. 

○                                           , and                          .
○ under the null hypothesis,                                . 
○                                : compares observed             with                .
○                                   , and           is a constant.
○ in practice,                                                                     . 



Overview of Nonparametric Scan Statistics

● Berk-Jones:

○ log-likelihood ratio statistic of the nonparametric hypothesis test.
○      : the empirical p-values follow the                     . 
○      : the empirical p-values follow a piecewise constant distribution. 
○   

● Higher Criticism:
 

● Kolmogorov-Smirnov:  

● Assumption: under       ,                                  .



Limitations of Nonparametric Scan

● Assumption of NPSSs: under       ,                                  .
● For anomalous pattern (subgraph) detection: 

○ the assumption is true for a randomly selected connected subset.
○ but not for connected subsets that are identified by maximizing the NPSS 

score. 

● Miscalibration: 
○ expected maximum proportion of significant nodes for all connected 

subgraphs of a given size N:

                
○ we find                        .



Limitations of Nonparametric Scan

● Justification of  
○ simulate p-values under       for 100 times on Erdos-Renyi and real graphs.   
○ calculate the average      

■ for each                                and 

○ the starred point is the combination of      and     for which                        is 
maximized.

○                decreases with N but remains much higher than    .



Limitations of Nonparametric Scan

● Issues of                        :
○ even under       and there are no true subgraphs of interest, there exists 

subgraphs      with                             , and thus very high NPSS scores. 
○ These large scores under the null result in reduced detection power, since 

the NPSS scores of the true anomalous subgraph must exceed a larger 
threshold to be considered significant. 

○ NPSS will biased toward detecting clusters at larger     threshold, even if 
the true signal is for a much smaller    .

○ NPSS will identify overly large clusters which include many nodes that 
have significant p-values just by chance, resulting in reduced precision of 
the detected cluster. 



Motivating Example

● Consider a single instantiation of WikiVote graph                      under           . 
● True subgraph       :

○ generated using a random walk with                . 
○ 75% of the p-values in     are significant at                  .
○                                                                         .

● Another subgraph        could have an even higher score, corresponding to a 
high significance threshold     :
○ consider                 
○ uncalibrated BJ picks out a subgraph with                      and 
○                                                                             . 
○ Precision=0.08, Recall=0.75, F-score=0.15

● Uncalibrated BJ: 
○ is biased toward detecting clusters at larger     threshold and identifies 

overly large cluster, resulting in reduced precision and poor detection. 



Calibrated Nonparametric Scan Statistics (CNSS)

● CNSS:
○  
○ replace the threshold reference                                      with   

● Calibrated Berk-Jones (CBJ):



Calibrated Nonparametric Scan Statistics (CNSS)

● Previous example on WikiVote:
○ for true subgraph      ,   

○ for a candidate       ,   



Calibrated Nonparametric Scan Statistics (CNSS)

● Previous example on WikiVote:
○ for true subgraph      ,   

○ for a candidate       ,   

○ we found                                   then

 

○ allow a subgraph        closer to the true subgraph to be found instead with

 

Precision=0.72, Recall=0.69, and F-score=0.70.  



Calibrated Nonparametric Scan Statistics (CNSS): 
An Efficient Approximate Algorithm

● How to compute                                                for each     and     ?   
○ possible solution: run PCST for each      and    .
○ time complexity is                         .



Calibrated Nonparametric Scan Statistics (CNSS): 
An Efficient Approximate Algorithm

● How to compute                                                for each     and     ?   
○ possible solution: run PCST for each      and    .
○ time complexity is                         .

● Our algorithm (randomization test on an efficient approximate algorithm)
○ randomization test to estimate 

■ create K replica of datasets under       , with p-values redrawn 
uniformly at random from [0, 1].

○ apply an efficient algorithm to solve the constrained set optimization 
problem                                      for each combination            . 
■ for each value of     , approximates the maximum       for each   

                        in a single, efficient run. 
■ based on repeated merging of nodes with the highest proportion of 

significant p-values.
   



Calibrated Nonparametric Scan Statistics (CNSS): 
An Efficient Approximate Algorithm

●   Estimate                                      for                          under each     :
○ given a graph with node-level p-values.
○ merge all adjacent significant nodes, and maintain a list       of merged 

nodes sorted by significance ratio                         .
○ repeatedly choose the merged node with highest significance ratio and 

performance as one of the following three merge steps:
■ add an adjacent node which contains some or all significant p-values; 
■ add an adjacent non-significant node that is also adjacent to at least 

one other significant node; or
■ add the highest-degree non-significant neighbor.

○ at each merge step, our method will try all three options and utilize the one 
leading to a merged node with the highest                          ratio; this is 
repeated until the list       only contains a single merged node.



Calibrated Nonparametric Scan Statistics (CNSS): 
Estimate                                            



Calibrated Nonparametric Scan Statistics (CNSS): 
An Efficient Approximate Algorithm
Calibrated Nonparametric Scan Statistics (CNSS): 
Estimate                                            

Three options to merge:
1. add an adjacent node which contains some or all significant p-values; 
2. add an adjacent non-significant node that is also adjacent to at least 

one other significant node; 
3. add the highest-degree non-significant neighbor.
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Estimate                                            
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Calibrated Nonparametric Scan Statistics (CNSS): 
An Efficient Approximate Algorithm

● During this merge procedure for this graph with                , we get a list of                :
○ when               , the max                ;
○ when               , the max                ;
○ when               , the max                ;
○ when               , the max                ;

● If we apply this to the target graph under       :
○ apply interpolation to estimate the max        for  N=4 and N=5.
○ still need to apply it for K replica of datasets with p-values redrawn uniformly at random from [0, 1] 

to compute                                      under various    s. 
○ compute 

for all                                  and      under consideration. 
● If we apply this to the target graph for detection under       :

○ the list of                 corresponds to the list of candidate subgraphs (merged super-nodes).
○ still need to apply it under various    s.
○ for each candidate subgraph, we could compute:

Calibrated Nonparametric Scan Statistics (CNSS): 
Estimate                                            



Calibrated Nonparametric Scan Statistics (CNSS): 
Low Bounds for the Expected Maximum Proportion of Significant Nodes

● Calibration with randomization test is time-consuming for large graphs.
● Two closed-form lower bounds of                 :

○ lower bound       from network neighborhood analysis.

○ low bound       from percolation theory.
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○ Only consider the network structure without the p-values.
○ For any N, what is the                                      under      ? 



Calibrated Nonparametric Scan Statistics (CNSS): 
Low Bounds for the Expected Maximum Proportion of Significant Nodes

● lower bound       from network neighborhood analysis.

○ Only consider the network structure without the p-values.
○ For any N, what is the                                      under       ? 
○ For example, let                 , with S=[2,5,7]

■                     and 
■ for N=3, we have                                              .
■ for N=4, we could add one significant node from

the neighbor, thus                                               .
■ for N=5,                                            .  
■ for N=6,                                            .



Calibrated Nonparametric Scan Statistics (CNSS): 
Low Bounds for the Expected Maximum Proportion of Significant Nodes

● low bound       from percolation theory.

○ Percolation theory states that: if a sufficiently large fraction of the graph nodes,              , are 
“marked”, then with high probability, there exists a connected subgraph S consisting of only 
marked nodes, with |S| equal to a constant fraction          of |V|.

○         is the solution to the equation                                                .
○ “Marking” both significant and (as needed) insignificant nodes to reach the percolation threshold.

■ based on the number of marked significant nodes, we could use the formula to find out the 
number of insignificant nodes are needed to connected all significant nodes.



Calibrated Nonparametric Scan Statistics (CNSS): 
Low Bounds for the Expected Maximum Proportion of Significant Nodes



Core Tree Decomposition

● Randomization test on large graphs is time-consuming. 
○ Solution 1: lower bounds.
○ Solution 2: core tree decomposition. 

● Core-whiskers (or core-periphery) structure commonly exists in many 
real-world networks:
○ the core keeps the general skeleton of the entire graph.



Core Tree Decomposition

● Randomization test on large graphs is time-consuming. 
○ Solution 1: lower bounds.
○ Solution 2: core tree decomposition. 

● Core-whiskers (or core-periphery) structure commonly exists in many 
real-world networks:
○ the core keeps the general skeleton of the entire graph.

● Core-tree decomposition:
○ decompose the graph into a small, dense core and a low-treewidth 

periphery.
○ compress significant tree-nodes into core. 
○ apply randomization test or lower bounds on the core. 



Experiments

● Five Semi-synthetic Datasets: 

○ leverage the graph structure of real networks.
○ simulate the true subgraph       using a random walk.

■ assume Gaussian signal
■ generate p-value 

○        
○ use                               for experiments.



Experiments

● Baseline Methods:

● Ablation Study:
○ CNSS+NoCalib: removes the calibration from CNSS, performing the same 

search but using the original     instead of       in the score function.
○ CNSS+LowerBound: replace the randomization test with the tightest lower 

bound                     .
○ CNSS+CoreTree: integrates the core tree decomposition into CNSS.



Experiments

● Research Questions
○ Q1. Subgraph Detection: Does our proposed CNSS have a better 

performance than state-of-the-art baselines on the task of anomalous 
subgraph detection?

○ Q2. Calibration: How does calibration affect detection performance, as a 
function of signal strength and graph structure?

○ Q3. Lower Bounds: How does the use of lower bounds of     , instead of 
      obtained via randomization tests, affect detection performance?

○ Q4. Core Tree Decomposition: How does integrating core-tree 
decomposition into CNSS affect the detection performance and run time?



Experiments

● Evaluation Metrics
○ Detection power: measures the ability to distinguish between graphs with 

or without an affected subgraph. 
■ step 1. compute BJ score for each detected subgraph
■ step 2. for each alternative run, we conduct a hypothesis test with 

significance level                   by setting p-value as the proportion of 
null runs that have higher BJ score than the alternative run

■ step 3. compute the proportion of hypothesis tests (for each method, 
for each real-world graph, for each signal strength µ) that reject the 
null hypothesis.

○ Detection performance:   
  

○ Run time. 



Experiments

★ Detection performance results

● The calibrated BJ scan statistic helps to pinpoint the true cluster as the strength of signal increases.
● On the contrary, all baselines, as well as the uncalibrated version of CNSS, fail to achieve accurate 

detection (as measured by F-score) for all network structures under consideration.
● CNSS+LowerBound < CNSS, but it’s better than baselines particularly for stronger signals.
● CNSS+CoreTree does not significantly change detection performance.



Experiments

★ Detection performance results

● Our proposed CNSS and its variants have higher average F-score over all networks and signal 
strength under consideration.  



Experiments

★ Detection power results:
○ CNSS outperforms baseline methods under different signal strengths on 

the various network structures.
○ calibrated BJ score helps to precisely pinpoint the true affected subgraph 

as the strength of signal increases.
○ the use of core-tree decomposition and lower bounds do not have 

substantial effects on detection performance for these five real-world 
datasets.

○ the baseline methods do not have consistent performance over different 
values of µ with different network structures.



Experiments

★ Run time results:

○ observe substantial speedups for CNSS+CoreTree.
○ lower-bounds save huge preprocessing time.



Case Study: COVID-19 Confirmed Cases Subgraph Discovery
● Dataset: Covid-19 daily confirmed cases for 3,234 counties in the USA across 

over 25 weeks from January 22 to July 8, 2020.
● Build a spatial-temporal graph with 80,850 nodes and 850,725 edges based on 

the weekly confirmed cases and county adjacency. 
○ each node represents a county in one week.
○ undirected spatial edge represents adjacency between counties.
○ undirected temporal edges: 

■ from node i in week t to node i in week t+1.
■ from node i in week t to all neighboring nodes j in week t+1.

● P-value of each node: generated based on the rank of the weekly confirmed 
cases to county population ratio divided by the total number of nodes in the 
graph.
○ a higher ratio of the number of weekly confirmed cases to the county 

population indicates a higher rank and thus a smaller p-value. 



Case Study: COVID-19 Confirmed Cases Subgraph Discovery

★ our CNSS method detects a significant connected subgraph of counties that 
have a 42% higher death rate two weeks later, as compared with the top-1 sub- 
graphs detected by LTSS and EventTree. 

★ death rate data is not provided to the detection algorithms.



Limitations and Conclusions

● We show NPSS methods are mis-calibrated, failing to account for the 
maximization of the statistic over the multiplicity of subgraphs.

● We develop CNSS to recalibrate NPSS, correctly adjusting for multiple 
hypothesis testing and taking the underlying graph structure into account, 
substantially improving detection performance.

● We propose an efficient (approximate) algorithm and new, closed-form lower 
bounds on the expected maximum proportion of significant nodes for 
subgraphs of a given size, under the null hypothesis of no anomalous patterns.

● The randomization test-based calibration approach is time-consuming, 
particularly for large-scale graphs.

● The closed-form lower bounds avoid the need of randomization test, but 
detection power is reduced when the anomalous signal strength is low.

● Core-tree decomposition methods enable the CNSS approach to scale to large 
real-world graphs without significant loss of detection performance.
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