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Introduction

e Detecting “hotspots” or anomalous patterns in graphs is an important but
challenging problem.

e Disease outbreak detection, network intrusion detection, etc.

e Problem: anomalous connected subgraph detection.




Introduction

Detecting “hotspots” or anomalous patterns in graphs is an important but
challenging problem.
Disease outbreak detection, network intrusion detection, etc.
Problem: anomalous connected subgraph detection.
Given a graph G = (V, ),
e each node V; € V is associated with a feature vector X; € RY
e historical observation {x;”,---,x\"} foreach v; € V.
Find a subgraph Gg = (5, 55) such that
e SCVand&s CE.
o (Ggis connectedin (5.
o (5gisanomalous.




Overview of Parametric Scan Statistics

e Parametric scan statistics:
o likelihood ratio statistics of the hypothesis test.
o Ho:the x; € RN ofnodes S within a candidate subgraph Gs are
generated by a parameterized background process.
o Hq:the X; € RY are generated by a different parameterized
distribution (a localized anomalous process).
o Kulldorff Scan Statistic (Kulldorff 1997).
Positive Elevated Mean (Qian, Saligrama, and Chen 2014).
Expectation-based Poisson and Gaussian (Neill 2009).
e Achieve high detection power across many spatio-temporal graph datasets.
e Limitations:
o strong parametric model assumptions.
o performance degrades when these models are incorrect.



Overview of Nonparametric Scan Statistics

e Nonparametric scan statistics (NPSSs):
o likelihood ratio statistics of the nonparametric hypothesis test.
o feature vector X; —> empirical p-value Pi based on {xz(l),- : (T)}

L4 Sy 1o 2 22)
1+T

Pi =

o Hp: pi ~ Uniform(0, 1) for each node v; € Swithin a candidate
connected subgraph GGg .
o H1: the empirical p-values follow a different distribution.

different distributions —> different NPSSs are formulated.

piecewise constant distribution —» Berk Jones (Berk and Jones 1979)
Higher Criticism (Donoho and Jin 2004)

Kolmogorov-Smirnov (Massey Jr 1951)

Anderson-Darling (Eicker 1979)



Overview of Nonparametric Scan Statistics

e NPSS-based anomalous pattern (subgraph) detection:
o M={S|SCV,Gg is connected in G}.
o connected subgraph optimization problem:

F(S) = & (o, N, (S),N(S
R F(S) = e zmex @ (e, No(S), V(S)

= max max ® (a, N,(S), N(S))

a<Qmax SEM

o F(S) := max,<q . P (a, N,(S), N(S))refers to the general form of NPSS.
0 No(8) =Y ,cs Hp(v) < a},and N(S) = 2 pes 1.

o under the null hypothesis, E[N.(S)] = aN(S)

o ®(a,Ny(S),N(S)): compares observed N, (S) with E[N,(S5)].

o 0<a<ampx <1, and ®maxis a constant.

o in practice, a € £ = {0.001,---,0.009,0.01, ---,0.09}.



Overview of Nonparametric Scan Statistics

e Berk-Jones:

357 (o, Na(S), N(S)) = N(S) x KL(% a)

log-likelihood ratio statistic of the nonparametric hypothesis test.

Ho: the empirical p-values follow the Uniform[0,1]
‘H1: the empirical p-values follow a piecewise constant distribution.

KL(a,b) = alog(a/b) + (1 —a)log((1 —a)/(1 — b))

o O O O

Ny (S)—aN(S)
N(S)a(1-a)

e Higher Criticism: ®rc (o, No(S), N(S)) =

e Kolmogorov-Smirnov: Prs (o, No(S), N(S)) = /N(S) - (Na(s) _ a)

e Assumption: under Hy, E[N,(S)/N(S)] = .



Limitations of Nonparametric Scan

e Assumption of NPSSs: under Hg , E[No(S)/N(S)] = a.
e For anomalous pattern (subgraph) detection:
o the assumption is true for a randomly selected connected subset.
o but not for connected subsets that are identified by maximizing the NPSS
score.

e Miscalibration:
o expected maximum proportion of significant nodes for all connected
subgraphs of a given size N:

o/ (N,a) =E [maXSEM,w[:N Ny (5)/N]

o wefind & (N,a) > a.



Limitations of Nonparametric Scan

e Justification of o/ (N, a) > «
o simulate p-values under H for 100 times on Erdos-Renyi and real graphs.

o calculate the average o/
m foreach N € {1,2,---,|V|}and «a € {.01,.05,.09}
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(a) |V| = 1000, p = 0.01. (b) |V| = 1000, p = 0.02. (c) WikiVote. (d) CondMat.

o the starred point is the combination of NV and & for which N x K&/, a)is
maximized.
o o (N, a) decreases with N but remains much higher than .



Limitations of Nonparametric Scan

Issues of o/ (N, a) > a:

o even under Ho and there are no true subgraphs of interest, there exists
subgraphs S with N, (S) > aN(S), and thus very high NPSS scores.

o These large scores under the null result in reduced detection power, since
the NPSS scores of the true anomalous subgraph must exceed a larger
threshold to be considered significant.

o NPSS will biased toward detecting clusters at larger C¢ threshold, even if
the true signal is for a much smaller C.

o NPSS will identify overly large clusters which include many nodes that
have significant p-values just by chance, resulting in reduced precision of
the detected cluster.



Motivating Example

Consider a single instantiation of WikiVote graph (|V| = 7066) under 1 (S).
True subgraph Gg:
o generated using a random walk with|S| = 100.
o 75% of the p-values in § are significantat a = 0.01.
o BJ= N(S)KL2: (‘9 ) = 100 KI(0.75, 0.01) ~ 289.
Another subgraph Gz could have an even higher score, corresponding to a
high significance threshold «:
o consider a = 0.09
o uncalibrated BJ picks out a subgraph with N(Z) = 900 and N, (Z) = 670
o BJ = N(Z)KI ];’V((ZZ) ) = 900 KI(0.744, 0.09) ~ 1100
o Precision=0.08, Recall=0.75, F-score=0.15
Uncalibrated BJ:
o is biased toward detecting clusters at larger & threshold and identifies

overly large cluster, resulting in reduced precision and poor detection.




Calibrated Nonparametric Scan Statistics (CNSS)

e CNSS:
o F(S):=max,<q . P (a, N,(S),N(S))
o replace the threshold reference (E[Nq(S)/N(S)] = a)with

E [maxgeps |si=n Na(S)]
N

o (N,a) =

e Calibrated Berk-Jones (CBJ):

Dons (0, Nu(S), N(S)) = N(8) x KL (55, o (N(S), )




Calibrated Nonparametric Scan Statistics (CNSS)

e Previous example on WikiVote: ©
N, (S

o for true subgraphGg, BJ = N(S)KL )0 @) = 100 KI0.75,0.01) ~ 289

N,(Z
o foracandidate Gz  BJ = N(Z)K{:Z), ) = 900 KI(0.744,0.09) ~ 1100




Calibrated Nonparametric Scan Statistics (CNSS)

Previous example on WikiVote:

©)

©)

©)

Nel8) ") = 100 KI(0.75,0.01) ~ 289

for true subgraphGs, BJ = N(S)KI7s,
No(Z)

for a candidate GZ BJ = N(Z)KL— & NZ) a) = 900 KI1(0.744,0.09) ~ 1100

we found «'(900, 0. 09) = 0.699 then

CBJ = N(Z)Ki 22 N(,) o/ (N, a)) = 900 KI(0.744,0.699) = 4.47
allow a subgraph Gy, closer to the true subgraph to be found instead with
N(W) =202, 2202 = 0.733 at & = 0.01, ' (202,0.01) = 0.347, and CBJ = 62.26

Precision=0.72, Recall=0.69, and F-score=0.70.




Calibrated Nonparametric Scan Statistics (CNSS):

An Efficient Approximate Algorithm

e How to compute o/ (N, a) = E[maXSGM"]f,':N YO for each Nand o ?

o possible solution: run PCST for each N and &,
o time complexity is O(|V|® log|V|) -




Calibrated Nonparametric Scan Statistics (CNSS):

An Efficient Approximate Algorithm

e How to compute o/ (N, a) = E[maXSEM"]f,':N YO for each Nand o ?

o possible solution: run PCST for each N and &,
o time complexity is O(|V|® log|V|) -
e Our algorithm (randomization test on an efficient approximate algorithm)
o randomization test to estimate E[max ey sj=n Na (S)]
m create K replica of datasets under H,, with p-values redrawn
uniformly at random from [0, 1].
o apply an efficient algorithm to solve the constrained set optimization
problem maxgen|sj=n Na(S) for each combination (N, a).
m for each value of ¢, approximates the maximum N, for each
N e {1,---,|V|} in a single, efficient run.
m based on repeated merging of nodes with the highest proportion of
significant p-values.




Calibrated Nonparametric Scan Statistics (CNSS):

An Efficient Approximate Algorithm

e Estimate maxgey|s=n Na(S) for N € {1,---,|V|}under each  :
o given a graph with node-level p-values.
o merge all adjacent significant nodes, and maintain a list Z of merged
nodes sorted by significance ratio Ny (5)/N(5).
o repeatedly choose the merged node with highest significance ratio and
performance as one of the following three merge steps:
m add an adjacent node which contains some or all significant p-values;
m add an adjacent non-significant node that is also adjacent to at least
one other significant node; or
m add the highest-degree non-significant neighbor.
o at each merge step, our method will try all three options and utilize the one
leading to a merged node with the highest N, (S)/N(S) ratio; this is
repeated until the list Z only contains a single merged node.



Calibrated Nonparametric Scan Statistics (CNSS):

Estimate MaXscM,|S|=N N, (5)

Find significant nodes for o = 0.05. N ﬂ Merge adjacent significant nodes. N




Calibrated Nonparametric Scan Statistics (CNSS):

Estimate MaXscM,|S|=N N, (5)

Find significant nodes for &« = 0.05. N ﬂ Merge adjacent significant nodes. N

Choose node with highest N, /N, and apply best \
option to merge.

Three options to merge:
1. add an adjacent node which contains some or all significant p-values;
2. add an adjacent non-significant node that is also adjacent to at least
one other significant node;
3. add the highest-degree non-significant neighbor.




Calibrated Nonparametric Scan Statistics (CNSS):

Estimate MaXscM,|S|=N N, (5)

Find significant nodes for o« = 0.05. N ﬂ Merge adjacent significant nodes. N
il
p=0.01

/Choose node with highest N, /N, and apply optlon-Z\

to merge.




Merge adjacent significant nodes. N

Calibrated Nonparametric Scan Statistics (CNSS):
NN

Estimate MaXscM,|S|=N N, (5)
Find significant nodes for o« = 0.05.

il
p=0.01
5 8 :|'>
@ p=0.01 p=0.01

Choose node with highest IV, /N, and apply option-z\

\ / to merge.

hoose node with highest N, /N, and apply option-3

N /T
to merge.

Choose node with highest N, /N, and apply option-3

/ to merge.
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Calibrated Nonparametric Scan Statistics (CNSS):

Estimate maxgscpy,|s|=N N, (5)

e During this merge procedure for this graph with o = 0.05, we get a list of (N,Ny):
o when N=3 themax No =3;
o when N—6,themaxNa—5
o when N=7 themax N, =5;
o when N =8 ,themax N, =5;
e If we apply this to the target graph under Hy:
o apply interpolation to estimate the max N, for N=4 and N=5.
o still need to apply it for K replica of datasefs with p-values redrawn uniformly at random from [0, 1]
to compute E[maxgen, s=n No(S)] Under various Os.
o compute

E [maXSEMJ,S\:N Nq (8)]

o (N,a) = ~
forall Vv ¢ 1,--- 7[1}‘} and ¢ under consideration.
e If we apply this to the target graph for detection under H; :

o thelistof (NN, NN,)corresponds to the list of candidate subgraphs (merged super-nodes).
o still need to apply it under various as.
o for each candidate subgraph, we could compute:

Bopy (@, No(S), N(S)) = N(S) x KL ( N(f)) o (N(S), a))



Calibrated Nonparametric Scan Statistics (CNSS):

Low Bounds for the Expected Maximum Proportion of Significant Nodes

e Calibration with randomization test is time-consuming for large graphs.
e Two closed-form lower bounds of o/ (N, a)i
o lower bound @] from network neighborhood analysis.

Theorem 1. For each ¢ € {1,...,|V|}, let k, be the largest ext-degree of a connected subgraph of size c.
Then forany N € {1,...,|V|} such thatc < N < ¢ + k., a lower bound for E[maxsem,|s/-n N (S)]is:

ca + min(k.a, N — c).

o low bound a5 from percolation theory.

Theorem 2. For an Erdos-Renyi (|V|, p) graph with average degree (k) = (|V| — 1)p, with high probability,
. alV| N
o' > min (1, T(l - exp(—(k)lv))) .



Calibrated Nonparametric Scan Statistics (CNSS):

Low Bounds for the Expected Maximum Proportion of Significant Nodes

e lower bound o} from network neighborhood analysis.
Theorem 1. For each ¢ € {1,...,|V|}, let k. be the largest ext-degree of a connected subgraph of size c.
Then forany N € {1,...,|V|} such thatc < N < ¢ + k., a lower bound for E[maxgem,|s/-n Na(S)]is:

ca + min(k.a, N — ¢).

o  Only consider the network structure without the p-values.
o Forany N, what is the E[maxscn 5=~ Na (S)] under Ho ?

4 h
OO0

C—© O
’0 p,




Calibrated Nonparametric Scan Statistics (CNSS):

Low Bounds for the Expected Maximum Proportion of Significant Nodes

e lower bound o} from network neighborhood analysis.
Theorem 1. For each ¢ € {1,...,|V|}, let k. be the largest ext-degree of a connected subgraph of size c.
Then for any N € {1,...,|V|} such thatc < N < ¢+ k., a lower bound for E[maxgepm,|s—n N (S)]is:
ca + min(k.a, N — ¢).
o  Only consider the network structure without the p-values.
o Forany N, what is the E[maxscn s—n Na (S)] under Ho ?

o Forexample, let o = 0.5, with S=[2,5,7] / | Consider ¢ = 3, and k., = 3. | \
m ca=15andk.a=1.5 )

[ ] for N=3, we have E[maxSEM,|3|:N Na (8)] > 1.5. ‘ 2 \

m for N=4, we could add one significant node from
the neighbor, thus E[maxscys=n Na(S)] > 2.5,

[ 5

for N=5, E[maxgecn 5= Na(S)] > 3. ° .

for N=6, E[maxgecn 5= Na(S)] > 3. /
@

o v




Calibrated Nonparametric Scan Statistics (CNSS):

Low Bounds for the Expected Maximum Proportion of Significant Nodes

e low bound a5 from percolation theory.
Theorem 2. For an Erdos-Renyi (|V|, p) graph with average degree (k) = (|V| — 1)p, with high probability,

o' > min (l, aTvl(l - exp(—(k) l':"; ))) .

o Percolation theory states that: if a sufficiently large fraction of the graph nodes, P -~ ﬁ , are
“‘marked”, then with high probability, there exists a connected subgraph S consisting of only
marked nodes, with |S| equal to a constant fraction P, of |V|.

o P is the solution to the equation Ps = p(1 — exp(—(k)Px)).

o “Marking” both significant and (as needed) insignificant nodes to reach the percolation threshold.

m based on the number of marked significant nodes, we could use the formula to find out the
number of insignificant nodes are needed to connected all significant nodes.




Calibrated Nonparametric Scan Statistics (CNSS):

Low Bounds for the Expected Maximum Proportion of Significant Nodes

U 1. 1 T 1. 1
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Figure 2: Lower Bounds of o/ Compared with Empirical Distribution by Randomization Tests.



Core Tree Decomposition

e Randomization test on large graphs is time-consuming.
o Solution 1: lower bounds.
o Solution 2: core tree decomposition.
e Core-whiskers (or core-periphery) structure commonly exists in many
real-world networks:
o the core keeps the general skeleton of the entire graph.




Core Tree Decomposition

e Randomization test on large graphs is time-consuming.
o Solution 1: lower bounds.
o Solution 2: core tree decomposition.
e Core-whiskers (or core-periphery) structure commonly exists in many
real-world networks:
o the core keeps the general skeleton of the entire graph.
e C(Core-tree decomposition:
o decompose the graph into a small, dense core and a low-treewidth
periphery.
o compress significant tree-nodes into core.
o apply randomization test or lower bounds on the core.



Five Semi-synthetic Datasets:

Dataset | Vertices |V| | Edges || | Density | Core Vertices V| | Core Density | True Nodes |S|
WikiVote 7,066 100,736 0.00403 1,823 0.0425 100
CondMat 21,363 91,286 0.0004 2:513 0.00487 200

Twitter 81,309 1,342,296 | 0.000406 17,337 0.0041 1,000
SlashDot 82,168 504,230 0.000149 10,599 0.0046 1,000

DBLP 317,080 1,049,866 | 0.0000208 22,354 0.00054 1,000

o leverage the graph structure of real networks.
o simulate the true subgraph Gsusing a random walk.
m assume Gaussian signal z; ~ Normal(u,1l)Vv; € S
m (generate p-value p;, =1 — CDF(x;)
O  p; ~ Uniform [0,1]Vv; € V\S
o use yu € [1.5,2,3,4,5] for experiments.



e Baseline Methods:

Method Time Complexity
Linear Time Subset Scanning (LTSS) O([V]log [V])
EventTree O(|€]log |V])
ColorCoding 02" - e*|€| log(@))
Non-parametric Heterogeneous Graph Scan (NPHGS) O([V|*log|V])
Additive Graph Scan (AdditiveScan) O(VI2V/|V])
Depth First Graph Scan (DFGS) O(q*) with1 < ¢ < 2
CNSS K|L|(k|V|log|V])

e Ablation Study:
o CNSS+NoCalib: removes the calibration from CNSS, performing the same
search but using the original & instead of o’ in the score function.
o CNSS+LowerBound: replace the randomization test with the tightest lower
bound max(af,a)).
o CNSS+CoreTree: integrates the core tree decomposition into CNSS.



Research Questions

©)

Q1. Subgraph Detection: Does our proposed CNSS have a better
performance than state-of-the-art baselines on the task of anomalous
subgraph detection?

Q2. Calibration: How does calibration affect detection performance, as a
function of signal strength and graph structure?

Q3. Lower Bounds: How does the use of lower bounds of o, instead of
o' obtained via randomization tests, affect detection performance?

Q4. Core Tree Decomposition: How does integrating core-tree
decomposition into CNSS affect the detection performance and run time?



e Evaluation Metrics
o Detection power: measures the ability to distinguish between graphs with
or without an affected subgraph.

m step 1. compute BJ score for each detected subgraph

m step 2. for each alternative run, we conduct a hypothesis test with
significance level o = 0.05 by setting p-value as the proportion of
null runs that have higher BJ score than the alternative run

m step 3. compute the proportion of hypothesis tests (for each method,
for each real-world graph, for each signal strength p) that reject the
null hypothesis.

o Detection performance: Precision = ROS Recall — [*08

S IR

2-Precision -Recall

o Run time. F-score = Precision +Recall °



% Detection performance results

- LTSS % CNSS+NoCalib. =¥- ColorCoding =A- EventTree ~<- NPHGS -~ AdditiveScan DFGS @ CNSS+LowerBound -{ll* CNSS+CoreTree CNSS
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The calibrated BJ scan statistic helps to pinpoint the true cluster as the strength of signal increases.
On the contrary, all baselines, as well as the uncalibrated version of CNSS, fail to achieve accurate
detection (as measured by F-score) for all network structures under consideration.
CNSS+LowerBound < CNSS, but it's better than baselines particularly for stronger signals.
CNSS+CoreTree does not significantly change detection performance.



% Detection performance results

Average Performance (F-score) Comparison over
Various Signal Strengths and Network Structures

o o
w (o)}
1 1

o
>
1

Average F-score
=} o
N w
1 1

o
=
1

o©
o
1

Our proposed CNSS and its variants have higher average F-score over all networks and signal
strength under consideration.



% Detection power results:

o CNSS outperforms baseline methods under different signal strengths on
the various network structures.

o calibrated BJ score helps to precisely pinpoint the true affected subgraph
as the strength of signal increases.

o the use of core-tree decomposition and lower bounds do not have
substantial effects on detection performance for these five real-world
datasets.

o the baseline methods do not have consistent performance over different
values of y with different network structures.



Y Run time results:

Methods WikiVote CondMat | T\.vitter | SlqsllDQt DBLP
g Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.)
LTSS 21 24 619 243 1425
EventTree 23 25 179 186 1019
ColorCoding 5220 8295 66690 29790 124956
NPHGS 8912 52046 998624 496587 X
AdditiveScan 17950 123100 X ¥ X
DFGS 22791 X X X X
CNSS 1771 43325 489624 447800 %
CNSS+CoreTree 685 1544 128812 45208 185053
Methods Wi!(iV0te Codeat | T\-vitter Sla-shDot DBLP
) Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.) | Run Time (sec.)
RandomizationTest 1602 x K 28341 x K 299349 x K 375999 x K X
RandomizationTest+CoreTree 660 x K 1026 x K 107192 x K 40124 x K 147086 x K
LowerBounds 59 504 16094 9073 R7832

o observe substantial speedups for CNSS+CoreTree.
o lower-bounds save huge preprocessing time.



Case Study: COVID-19 Confirmed Cases Subgraph Discovery

e Dataset: Covid-19 daily confirmed cases for 3,234 counties in the USA across

over 25 weeks from January 22 to July 8, 2020.
e Build a spatial-temporal graph with 80,850 nodes and 850,725 edges based on
the weekly confirmed cases and county adjacency.
o each node represents a county in one week.
o undirected spatial edge represents adjacency between counties.
o undirected temporal edges:
m from nodeiin week t to node i in week t+1.
m from node iin week t to all neighboring nodes j in week t+1.

e P-value of each node: generated based on the rank of the weekly confirmed
cases to county population ratio divided by the total number of nodes in the
graph.

o a higher ratio of the number of weekly confirmed cases to the county
population indicates a higher rank and thus a smaller p-value.




Case Study: COVID-19 Confirmed Cases Subgraph Discovery

Table 1: COVID-19 Case Study: Top-3 Detected Subgraphs for Each Method

# of weeks | avg. # of counties | avg. population of | avg. confirmed avg. deaths per avg. confirmed avg. death rate
detected | detected per week | detected counties | cases per week | week (2 weeks lag) | cases rate x107° | (2 weeks lag) x10~°
CNSS Ist 16 294.19 49369759.69 86596.81 4166.44 175 8.44
CNSS 2nd 15 60.67 10151920.33 14001.60 520.6 138 5.13
CNSS 3rd 13 7.69 4480384.39 10877.31 207 243 4.62
LTSS Ist 17 632.24 111861408.00 138212.47 5986 124 5:35
LTSS 2nd 14 5.14 802079.71 678.43 8.71 85 1.09
LTSS 3rd 4 9.25 2505224.25 1935.50 34.25 77 1.37
EventTree lst 16 566.13 96492336.44 134612.50 5739.69 140 5.95
EventTree 2nd 7 2.14 762258.57 579.43 32.14 76 4.22
EventTree 3rd 1 2 299612.00 262 13 87 4.34

*

our CNSS method detects a significant connected subgraph of counties that

have a 42% higher death rate two weeks later, as compared with the top-1 sub-
graphs detected by LTSS and EventTree.

death rate data is not provided to the detection algorithms.



Limitations and Conclusions

e We show NPSS methods are mis-calibrated, failing to account for the
maximization of the statistic over the multiplicity of subgraphs.

e \We develop CNSS to recalibrate NPSS, correctly adjusting for multiple
hypothesis testing and taking the underlying graph structure into account,
substantially improving detection performance.

e \We propose an efficient (approximate) algorithm and new, closed-form lower
bounds on the expected maximum proportion of significant nodes for
subgraphs of a given size, under the null hypothesis of no anomalous patterns.

e The randomization test-based calibration approach is time-consuming,
particularly for large-scale graphs.

e The closed-form lower bounds avoid the need of randomization test, but
detection power is reduced when the anomalous signal strength is low.

e Core-tree decomposition methods enable the CNSS approach to scale to large
real-world graphs without significant loss of detection performance.
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