
Knowledge Tracing for Complex Problem Solving: Granular Rank-Based
Tensor Factorization

CHUNPAI WANG, University at Albany - SUNY, USA

SHAGHAYEGH SAHEBI, University at Albany - SUNY, USA

SIQIAN ZHAO, University at Albany - SUNY, USA

PETER BRUSILOVSKY, University of Pittsburgh, USA

LAURA O. MORAES, Federal University of Rio de Janeiro, Brazil

Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important
applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of
course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed
to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches
were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice
questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that
all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve
many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations
in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its
concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all
attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better
represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization
(GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and
discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of
GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that
attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering
complex latent concepts in the problems.

CCS Concepts: • Social and professional topics→ Student assessment; •Computingmethodologies→ Tensor factorization.

Additional Key Words and Phrases: knowledge tracing, tensor factorization, complex problem solving, aggregation

ACM Reference Format:
Chunpai Wang, Shaghayegh Sahebi, Siqian Zhao, Peter Brusilovsky, and Laura O. Moraes. 2021. Knowledge Tracing for Complex
Problem Solving: Granular Rank-Based Tensor Factorization. In Proceedings of the 29th ACM Conference on User Modeling, Adaptation

and Personalization (UMAP ’21), June 21–25, 2021, Utrecht, Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3450613.3456831

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/10.1145/3450613.3456831
https://doi.org/10.1145/3450613.3456831

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

1 INTRODUCTION

Personalized online learning systems have recently drawn a lot of attention because of the growing need to assist and
improve students’ learning. A fundamental part of the user modeling task in these systems is estimating students’
knowledge states as they work with learning materials [3]. This task, known as knowledge tracing (KT), is necessary for
predicting students’ performance in future assessments, personalizing problems and exercises for students, identifying
at-risk students, and providing teachers with a detailed view of overall student progress. In particular, KT models use
student attempt sequences, including student performance (e.g., success or failure) on past problems, to estimate student
knowledge at the end of a sequence and predict student performance on the next attempts.

To quantify student knowledge, traditional KT models rely on a predefined domain knowledge model that represents
the associations between the problems and course concepts. Such models individually trace student knowledge in each
of these concepts, neglecting the potential relationships between different concepts. As these models learn the same set
of parameters for all students, they are not personalized to the student specifications. For example, Bayesian knowledge
tracing (BKT) [3], which is one of the pioneer KT models, represents student knowledge states in each concept using a
two-state HMM, which imposes a Markovian assumption on knowledge states from one attempt to the next.

In recent years, modern KTmodels have been developed to address the above problems. For example, many variants of
BKT have been proposed to improve the model by considering the potential to forget the learned concepts [7], accounting
for the dependencies between concepts [8], and personalizing themodel parameters for different students [27]. In addition
to the Bayesian models, latent factor approaches have been successful in considering the concept relationships [11, 20,
21, 29]. For example, Lan et al. [11] proposed a sparse factor analysis framework for both student knowledge tracing
and domain knowledge estimation. Sahebi et al. [20] proposed a tensor factorization method to explicitly model student
learning processes by assuming a strictly monotonic increasing learning gain. Zhao etal. [29] leverage the multiview
tensor factorization method for modeling student knowledge using multiple learning resource types. Similarly, deep
learning models, such as DKT [17] and DKVMN [28], have recently been introduced into the KT domain.

However, the majority of KT models have assumed that each attempt in a sequence considered by tracing is relatively
simple and involves the application of one or very few concepts, such as small steps in solving either a complex problem
or an elementary problem. With this assumption, the observed student performance can be directly associated with a
few involved domain concepts, and each correct or incorrect attempt by the student can provide a relatively confident
evaluation of student knowledge in those concepts. As a result, when considering these kinds of problems, current
KT models assume that every attempt in student history is equally important in quantifying student knowledge. This
assumption can be sufficient for domains in which each problem consists of a few atomic concepts. However, it is
deficient for domains with more complex problems, such as writing a program or solving an assignment with multiple
steps.

In complex problem solving, each problem can include multiple concepts, such that knowing all of them to some
extent is necessary for correctly answering the problem. Because of this complexity, student attempt observations will
be noisier, as slipping in even one of the required concepts can significantly harm student performance. Additionally,
identifying the concepts that are responsible for an imperfect performance will be more challenging in such complex
problems. Similarly, solving a complex problem correctly by guessing a difficult unknown concept or by trial and error
on that important concept will be wrongly attributed to a student’s high knowledge of all of the involved concepts. As
a result, such noisy observations could easily cause traditional KT models to provide an inaccurate estimation of overall
levels of student knowledge. For example, consider a student who has already mastered some concepts. This student

2

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

tries a problem on those concepts three times, getting the problem right the first time (successful attempt), slipping in
one of the concepts the second time (failed attempt), and getting it right again in the third time (successful attempt). In
current KT approaches, since the model tries to fit every student attempt, these cases result in fluctuations in estimated
student knowledge. Even in models like BKT, which try to consider small guess and slip probabilities by modeling each
concept independently, or DKT+ [26], which aims to smooth out student predicted performance (not knowledge) using
a constraint, having a binary knowledge state and fitting to every attempt results in knowledge state inaccuracies.

In this paper, we argue that, due to the noise in solving complex problems, some student attempt observations
are more informative and important than others. For that, we address the student knowledge tracing challenge for
complex problems by summarizing student attempts to better represent student performance. We propose a personalized
knowledge tracing model that automatically detects “less important” student attempts and aggregates them into other
attempts to better represent student knowledge and predict their performance. Additionally, our proposed KT model is
personalized for students and automatically discovers the domain knowledge model without requiring extra problem
information, such as text, topics, or tags. In particular, we model student sequences in a tensor and propose an adaptive
Granular RAnk based TEnsor factorization (GRATE) to address the noisiness and sparsity issues so as to provide a
plausible and precise knowledge modeling. We impose a rank-based constraint on student knowledge across attempts to
help reduce the unnecessary fluctuations in student knowledge and improve the interpretability of the model. GRATE
does not rely on a domain knowledge model, as it automatically discovers latent concepts for the problems presented to
students. It is personalized by profiling students into student latent features and learning a separate set of parameters
for them in a collaborative way.

Our contributions in this paper are: (a), we are the first to address the noisy observation challenge for student
knowledge tracing in complex problem solving; (b), for this, we propose a novel tensor factorization method that
adaptively aggregates student attempts while imposing a rank-based constraint to represent students’ gradual learning;
(c), our knowledge tracing model is personalized and does not rely on additional domain knowledge information; (d),
we conduct extensive experiments to analyze and validate the effectiveness of our proposed model, compared to several
state-of-the-art baselines, on three real-world datasets; and (e), we demonstrate that our proposed method is capable of
providing precise and plausible student knowledge states while learning meaningful question-concept associations.

2 GRANULAR RANK BASED TENSOR FACTORIZATION (GRATE)

Our goal in this work is to handle the noise and fluctuations in student knowledge tracing of complex problems without
relying on a domain knowledge model or a predefined mapping between problems and concepts. We aim to do this
with a personalized KT approach that is interpretable without harming the model performance; e.g., in the student
performance prediction task. In the following, we formulate this challenge as a tensor factorization problem, present
our proposed method to address the challenge, explain our intuition behind choosing tensor factorization as the basis
of our model, and provide the algorithm for our method.

2.1 Problem Formulation and Assumptions

We consider an online learning system in whichM students attempt N problems in sequences of maximum length
T over time. Students can attempt the problems in any order and as many times as they like. Student performance
during each attempt is recorded as a score, grade value, or binary (success or failure) data. We represent the students’
logged performance records in a 3-mode tensor X ∈ [0, 1]M×T×N . Every entry 𝑥𝑢,𝑡,𝑖 ∈ X represents the 𝑢𝑡ℎ student’s
normalized grade on 𝑖𝑡ℎ problem at attempt index 𝑡 . Our goal is to factorize this tensor to be able to accurately estimate

3

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

student knowledge of the problems’ latent concepts and predict student performance in their future problem attempts,
according to their history.
Model Assumptions. We build our model based on the following assumptions: (a) Domain knowledge assumption:
Each problem covers a number of concepts that are presented in the course with different proportions; the set of all of
the course concepts are shared across problems; and the training data does not include the problems’ contents nor their
concepts. (b) Student performance assumption: Different students have different learning abilities and initial knowledge
and their performance in different problems depends on their knowledge state, especially in the concepts related to
those problems. (c) Student learning assumption: As students interact with the problems, they learn the concepts that
are presented in them, meaning that their knowledge in these concepts increases gradually; but students may also
forget some concepts. (d) Attempt noisiness assumption: Student data can be noisy; e.g., they may slip in one concept out
of all the problem concepts and receive a low score, while they have already mastered all of these concepts. Similarly,
they may guess the correct answer to a problem without knowing all the problem concepts. As a result, some attempts
may not be an accurate representation of student knowledge.

2.2 The Proposed Model

Tensor Factorization. Following the (a) domain knowledge and (b) student performance assumptions above, we first
model student interaction tensor X as a factorization of three lower dimensional representations: 1) an M ×K student
latent feature matrix 𝑆 , that represents particular student features (such as abilities and personalities) that are constant
over time; 2) a K × T × C temporal dynamic knowledge tensor A, that shows the knowledge of students with specific
abilities in the course concepts as they attempt the problems; and 3) a C × N matrix 𝑄 serving as a mapping between
problems and course concepts. The upper tensor factorization in Figure 1 represents this model. According to our
factorization, the resulting tensor from product K = 𝑆A represents student knowledge in each concept at each attempt.
In addition to the above factors, we add a student-specific bias 𝑏𝑢 , problem-specific difficulty 𝑏𝑖 , and average score
offset 𝜇. Consequently, we can estimate students’ performance at attempt 𝑡 as in the following, where 𝜎 represents a
standard probit or logit link function:

𝑥𝑢,𝑡,𝑖 = 𝜎 (s𝑢 · 𝐴𝑡 · q𝑖 + 𝑏𝑢 + 𝑏𝑖 + 𝜇) (1)

Note that using 𝜎 makes the model interpretation flexible: both as an estimation of a real-valued score between zero
and one, and as the probability value of the binary success or failure in solving a problem (as in a classifier). To learn
the parameters 𝑆 , 𝐴, 𝑄 , and the biases, we can minimize the following objective function:

L0 =
∑

𝑢,𝑡,𝑖∈𝛺𝑜𝑏𝑠

(
𝑥𝑢,𝑡,𝑖 − 𝑥𝑢,𝑡,𝑖

)2 + 𝜆𝑠 ∥𝑠𝑢 ∥22 + 𝜆𝑎

T∑
𝑡=1

∥𝐴𝑡 ∥2𝐹 (2)

in which the set 𝛺𝑜𝑏𝑠 consists of all non-missing values in X. The last two terms are regularization constraints with
important weights 𝜆𝑠 and 𝜆𝑎 to ensure the generalizability of the learned values.
Adaptive Granularity-Based Aggregation. The student attempt tensor X is very sparse, since the students only
interact with one problem during each attempt. Additionally, because of problem complexities, the observed attempts
are noisy and unreliable (assumption (d) or attempt noisiness assumption). As a result, it is difficult to extract accurate
and interpretable underlying structures from this tensor. Moreover, equally relying on all attempts, whether they are
noisy or not, results in imprecise knowledge states and poor performance predictions.

4

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Student Question Time

2 3 10/21/20:14:11:53
1 1 10/21/20:14:14:01
3 2 10/23/20:15:29:51
10 9 10/23/20:11:50:15
5 3 10/23/20:13:05:28

1 1 10/28/20:21:16:01
10 2 10/29/22:09:11:38

.

..

Raw Student Activity Data

6 15 10/23/20:13:05:53
5 3 10/23/20:13:05:53

Score

76
90
34
95
76
76
67

100
86

5 1 10/29/23:02:47:29 80 U
se

rAgg. T
im

e I
ndex

Question

U
se

r

Latent Feature

× ×

Fe
at

ur
e

Concept

Agg. T
im

e I
ndex

Question

Q
𝑌

S

C
on

ce
pt

~A

U
se

r

Tim
e I

ndex

Question

𝑋 U
se

r

Latent Feature

× ×

Fe
at

ur
e

Concept

Tim
e I

ndex

Question

QS

C
on

ce
pt

A

GRATE

Student
Knowledge Modeling

Domain
Knowledge Modeling

Fig. 1. Knowledge Modeling via Granular Rank-Based Tensor Factorization.

To address this issue, we propose to automatically aggregate attempt slices that are deemed to be not informative
enough with their neighbor attempts. This will summarize the informative and non-informative attempts together,
keeping only the important information and leaving out the noisy ones. To do this, we find a smaller aggregated tensor
that summarizes our initial student attempt tensor, along with the attempts, with a maximal recovery of information or
a minimal loss of information.

Inspired by [18], we aim to find an aggregated 3-mode tensor Y of dimensionsM × T̃ ×N with T̃ ≤ T , such that Y
can accurately represent our initial tensor X, measured by a goodness of fit or utility function F. To achieve this goal,
we find an aggregation matrix𝑊 that indicates which attempts should be integrated into their neighboring attempts. In
other words, we find𝑊 such that aggregating the 𝑋 tensor using it maximizes the utility function F:

max
𝑊
F(X ×2𝑊) (3)

where ×2 denotes the aggregation operation on the tensor’s second mode (attempt mode), and𝑊 (𝑖, 𝑗) = 1 if slice 𝑖
in tensor X is aggregated into slice 𝑗 in the resulting tensor, otherwise𝑊 (𝑖, 𝑗) = 0. For the utility function F, we use
missing value prediction accuracy. As a result, we summarize the input tensor X using the aggregation matrix𝑊 such
that the new tensor Y provides us with the highest student performance prediction accuracy. For instance, consider the
tensor X of dimension 5× 6× 5 with the optimal aggregate shape of Y is 5× 2× 5. In this case,𝑊 is of size 2× 6 such as:

𝑊 =

[
1 1 0 0 0 0
0 0 1 1 1 1

]
(4)

where the first two slices of X will be aggregated as the first slice of Y, and the last four will form the second.
Since student knowledge states typically exhibit a Markovian property [29], we follow a greedy aggregation of slices,

similar to the IceBreaker algorithm [18], to try to aggregate the subsequent attempts. This way, the aggregation matrix
𝑊 will have ones only close to the diagonal and zeros in all other places. This kind of aggregation also reduces the time
complexity of solving Equation 3 from 𝑂 (2T) to linear time complexity.

For the aggregation operation ×2, we fill the unobserved values in the previous (𝑡 − 1) attempt slice with the observed
values in the current (𝑡) attempt slice. Also, we replace the observed values in the previous attempt with the values in
the current attempt if they are observed. This means that the aggregated attempt contains part of the observations

5

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

from both the previous and current attempts. This is based on an intuitive assumption that the later attempts on a
question are more informative than the earlier ones. For instance, if students slipped once on the same question, they
are less likely to slip again. Therefore, we use the current attempt values if they are available; otherwise, we use the less
informative observations from the previous attempt. The mathematical representation of our aggregation operation is
summarized below 1.

𝑦𝑢, ˜𝑡−1,𝑖 =


𝑥𝑢,𝑡−1,𝑖 if 𝑥𝑢,𝑡−1,𝑖 is observed, but 𝑥𝑢,𝑡,𝑖 is not observed

𝑥𝑢,𝑡,𝑖 if 𝑥𝑢,𝑡,𝑖 is observed
(5)

By having such an aggregation, we expect to rule out the noisy attempts that are observed due to the complexity of
problems being solved. To learn the parameters of this aggregated model, we update the loss in Equation 2 in two ways
to achieve the loss function in Equation 6. First, we use the new aggregated tensor Y instead of the input tensor X2.
Second, to reduce the noise even further, we use the weighted least square error with confidence 𝜔𝑢,𝑡,𝑖 as our objective
function. We set 𝜔𝑢,𝑡,𝑖 to be the number of student 𝑢’s trials on question 𝑖 by attempt 𝑡 , to represent the confidence in
that attempt’s data. This means that the more the student attempts a question, the more confidence we have in our
observation of student performance in it.

L1 =
∑

𝑢,𝑡,𝑖∈𝛺𝑜𝑏𝑠

𝜔𝑢,𝑡,𝑖 ·
(
𝑦𝑢,𝑡,𝑖 − 𝑦𝑢,𝑡,𝑖

)2
+ 𝜆𝑠 ∥𝑆 ∥2𝐹 + 𝜆𝑎

T̃∑
𝑡=1

∥𝐴̃𝑡 ∥
2
𝐹 (6)

Rank-Based Knowledge Increase Constraint. Finally, while we assume that student knowledge increases as a result
of solving more problems (student learning assumption (c)), the model so far does not follow such an assumption. To
address this, we add a rank-based constraint to the tensor factorization model, inspired by [4]. In particular, we would
like to make sure that student knowledge increases in the problem-related concepts after the student interacts with
a specific problem. That is 𝑠𝑡 · 𝐴𝑡+1 ≥ 𝑠𝑡 · 𝐴𝑡 or 𝑘𝑢,𝑡+1 ≥ 𝑘𝑢,𝑡 . Please note that, unlike [4] where this assumption is
imposed on predicted performance values, our assumption is imposed on student knowledge. This new constraint helps
us to not only rely on the sparse and noisy performance observations in the data, but also to exploit the predicted (and
unobserved) student performances. This means that we can use the estimated student scores 𝑥𝑢,𝑡+1,𝑖 for alleviating the
noisiness and sparsity of the data tensor and prevent over-fitting to it. Finally, to add this assumption, we minimize the
rank-based constraint in Equation 7. This constraint will lead to a smooth and global knowledge increase in students,
while allowing for small decreases, in case the student forgets some concepts.

𝐿2 = log
(
𝜎

(
𝑠𝑢 · 𝐴̃𝑡+1 − 𝑠𝑢 · 𝐴̃𝑡

))
(7)

The Full Model. Eventually, we put together all parts of the model to factorize the aggregated performance tensor with
a rank-based constraint and learn the model parameters, including the student latent feature matrix, the knowledge
tensor, and the problem concepts. To this end, we optimize the objective function in Equation 8, which is a weighted
combination of previously defined loss functions. This way, the adaptive granularity aggregation and the rank-based
knowledge increase constraint cooperate to both resolve the sparsity problem and remove the noisy observations,
which leads to a more accurate model. Here, 𝜂 ∈ [0, 1] is the trade-off parameter for the knowledge increase constraint

1Please note that our aggregation operation is different from in [18] in order to match our KT application.
2Please note that the aggregation and parameter estimation are done simultaneously in the algorithm, rather than by first learning a fixed Y and then by
learning the parameters (Section 2.3).

6

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

versus the performance prediction fit. The outer summation can be replaced with implicit feedback sampling for some
𝑗 < 𝑡 − 1 instead of the summation from 𝑗 = 1 to 𝑗 = 𝑡 − 1.

minimize
s𝑢 ,𝐴̃𝑡 ,q𝑖 ,𝑏𝑢 ,𝑏𝑖

L = L1 + 𝜂
𝑡−1∑
𝑗=1

∑
𝑢,𝑖

log
(
𝜎

(
𝑠𝑢 · 𝐴̃ 𝑗 − 𝑠𝑢 · 𝐴̃ 𝑗+1

))
(8)

subject to


𝑠𝑢,𝑖 ≥ 0 ∀𝑢 ∈ {1, · · · ,M},∀𝑖 ∈ {1, · · · ,K}

𝑞𝑐,𝑖 ≥ 0 ∀𝑐 ∈ {1, · · · , C},∀𝑖 ∈ {1, · · · ,N}∑
𝑐 𝑞𝑐,𝑖 = 1. ∀𝑖 ∈ {1, · · · ,N}

(9)

To ensure interpretable student modeling and proportional concept coverage on each problem, we enforce the
constraints in Equation 9. Specifically, the first constraint on 𝑆 ensures that student latent feature weights or student
soft membership values in the latent features are non-negative. The second and third constraints on 𝑄 make sure that
the concept contributions in each problem are non-negative and sum to one. This way, we can interpret the 𝑄 values
as how much information on each concept is provided in each problem and can directly compare the problems with
each other, according to their concepts. We use a projected stochastic gradient descent on the final loss L to learn the
parameters of the model.
Our Intuition on Choice of the Model. We have six main reasons for modeling the student knowledge tracing
challenge as a tensor factorization problem. First, unlike deep learning models, tensor factorization models do not
require an abundance of data. Our model can work well with medium-sized datasets that have missing and noisy
information. Second, our tensor factorization design is perfect for discovering the underlying domain knowledge or
concept structure. The problem latent factors discovered by our model can be interpreted as the discovered concepts
and the problems can be explained as weighted combinations of the discovered concepts. In other words, problems
are soft members of the concepts, and a concept’s importance to each problem can be presented as the membership
weight. This is unlike KT models, such as PFA [16], that rely on a predefined domain knowledge model, or those
like BKT [3] and iBKT [27] that model each concept independently. Third, our proposed factorization is designed for
personalized KT in students, following a collaborative-filtering [10, 13] type of structure in recommender systems.
Our model automatically attributes students to student latent features, which can be interpreted as student abilities
and learning pace. Similar to problems, students have soft memberships in these latent features and a separate set of
personalized knowledge increase parameters are learned for each latent feature. This contrasts with many existing deep
learning based models[2, 6, 17, 28] that learn the same set of parameters for all students. Fourth, our choice of tensor
factorization allows us to have a “global” trend on student knowledge increase. Adding a constraint, similar to our
rank-based constraint, is intrinsic to the tensor factorization models [4, 23]. While the rank-based constraint is applied
locally, it will result in a global increasing trend in student knowledge in the concepts that the student is interacting
with. This is similar to IRT [19] and FTDF [20] models and is different from models such as DKT [17] and DKVMN [28]
that cannot easily constraint student knowledge trends in a global way. Fifth, unlike models such as BKT [3] that have
a two-state (known vs. unknown) knowledge state for students, our model can estimate how much a student knows
about each concept. Finally and most importantly, by using the tensor structure, we can measure the importance of
each attempt in student sequences and easily aggregate the less informative ones into previous attempts.

7

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

2.3 Algorithm and Implementation Details

The pseudo-code of our GRATE model is described in Algorithm 1 3. In lines 1-2 of the algorithm, we predict students’
performance at attempt 2. Lines 3-20 corresponds to the online training of the rest of the attempts. For lines 2 and 19,
we leverage the projected stochastic gradient descent to alternately update parameters (s𝑢 , 𝐴̃𝑡 , q𝑖 , 𝑏𝑢 , and 𝑏𝑖) to solve
the minimization problem (8). Moreover, to ensure 𝑠𝑢,𝑖 ≥ 0 ∀𝑢, 𝑖 and 𝑞𝑐,𝑖 ≥ 0 ∀𝑐, 𝑖 , the updated 𝑠𝑢,𝑖 and 𝑞𝑐,𝑖 are projected
to the feasible set by clipping the values into [0, 1]. To ensure

∑
𝑐 𝑞𝑐,𝑖 = 1,∀𝑖 ∈ {1, · · · ,N}, we normalize the vector q𝑖 .

We start with a large learning rate for SGD and reduce it by receiving new observation data. At line 12, we use the
online training mechanism in which we only train on new data points when new observation data are added. The
algorithm’s time complexity is linear with respect to the number of observations. Since each student could only work
on a single question at each time index and the aggregation does not increase the number of observations, the time
complexity is 𝑂 (MT).

Algorithm 1: GRATE Knowledge Modeling.
Input: Observed students’ interaction records 𝛥𝑜𝑏𝑠 , including training students’ historical interaction records and targeting students’ first

interaction records;
1 𝛺𝑜𝑏𝑠 = {𝑥𝑢,1,𝑖 ∈ 𝛥𝑜𝑏𝑠 , ∀𝑢, 𝑖 }

⋃{𝑥𝑢,2,𝑖 ∈ 𝛥𝑜𝑏𝑠 , ∀𝑢, 𝑖 }
2 Solve the problem (8) with constraints (9) on𝛺𝑜𝑏𝑠 .
3 Y𝑝𝑟𝑒𝑣 = {𝑥𝑢,1,𝑖 ∈ 𝛥𝑜𝑏𝑠 , ∀𝑢, 𝑖 }
4 Create a tensor 𝑌 with size M × 1 × N and fill Y𝑝𝑟𝑒𝑣 into it.
5 for each time index 2 ≤ 𝑡 < 𝑇 do
6 Fill target students’ new records 𝑥𝑢,𝑡,𝑖 into 𝛥𝑜𝑏𝑠

7 X𝑡 = {𝑥𝑢,𝑡,𝑖 ∈ 𝛥𝑜𝑏𝑠 , ∀𝑢, 𝑖 }
8 Y𝑐𝑢𝑟𝑟 = Y𝑝𝑟𝑒𝑣 ⊔ X𝑡 ; ⊲ The ⊔ denotes aggregation operation.

9 if 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (Y𝑐𝑢𝑟𝑟) > 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 (Y𝑝𝑟𝑒𝑣) then
10 Y𝑝𝑟𝑒𝑣 = Y𝑐𝑢𝑟𝑟 .
11 Fill Y𝑐𝑢𝑟𝑟 into last slice of 𝑌 .
12 else
13 Y𝑝𝑟𝑒𝑣 = X𝑡 .
14 Add a new slice into 𝑌 , and fill X𝑡 into this new slice.
15 end
16 X𝑡+1 = {𝑥𝑢,𝑡+1,𝑖 ∈ 𝛥𝑜𝑏𝑠 , ∀𝑢, 𝑖 }
17 Add a new slice into 𝑌 , and fill X𝑡+1 into this new slice.
18 𝛺𝑜𝑏𝑠 = {non-missing 𝑦𝑢,𝑡,𝑖 in 𝑌 }
19 Solve the problem (8) with constraint (9) on𝛺𝑜𝑏𝑠 .
20 end

3 EXPERIMENTS

We conducted experiments on three datasets to evaluate: 1) the model’s performance in the student performance
prediction task, as compared to the baselines; 2) the effect of different model parts on its performance; 3) the aggregation
effect on student knowledge states; and 4) the discovered latent concepts.

3.1 Datasets

Three representative real-world datasets are used in our experiments. Table 1 shows the descriptive statistics of these
three datasets.MORF 4 is a framework for accessing and experimenting with MOOC data of over 77 unique courses[1].
We use the data from one of these courses, “Big Data in Education”, as our experimental dataset. This course includes

3The source code is provided at: https://github.com/persai-lab/UMAP2021-GRATE
4https://educational-technology-collective.github.io/morf/

8

https://github.com/persai-lab/UMAP2021-GRATE
https://educational-technology-collective.github.io/morf/

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

10 complex assignments, each of which contain a set of questions that are related to each other. As only the students’
grades on the whole assignments are available, we view each assignment as a complex “problem” in our model that
covers multiple learning concepts. These assignments are published in sequential order, but students can have multiple
attempts on each assignment at any time. Students’ scores are normalized into [0, 1]. CSIntro5 contains students’
outcomes from 10 different Computer Science introductory courses collected during two semesters, using the Machine
Teaching ITS [14]. For each problem, the students write a Python program to solve the proposed problem. The problems
are complex, as solving each problem requires an understanding of multiple programming concepts, such as variables,
loops, and conditional statements. Student codes are tested against several test cases. The grade given at each attempt is
the percentage of correct test cases. MasteryGrids6 is a dataset collected from students’ interactions with the Mastery
Grids interface [12] to learn the Python programming language. It contains students’ binary scores (success or failure)
on the programming problems in the system. Similar to CSIntro dataset, each problems requires students to understand
a variety of concepts. Figure 6 shows some examples of the questions.

Table 1. Statistics of 3 Datasets.

Dataset #Users #Attempts #Problems #Records
Median
Problem
Per User

Median
#Attempts
Per User

Median
#Users
Per Problem

Median
#Attempts
Per Problem

MORF 686 25 10 11700 8 17 643.5 1282
CSIntro 120 50 48 2231 6 16.5 17 37.5

MasteryGrids 382 70 30 10357 14 26 166.5 322

3.2 Experimental Setup and Baselines

We use a 5-fold nested student-stratified cross validation for our experiments. We shuffled and split the students randomly
into five groups and ran the experiments for five rounds. At each round, we selected one of the five student groups
as the test group and the rest (four groups) as the training group. For test students, we started by predicting their
performance at second attempt, given their first attempt. Then, we continued by predicting their performance at the
next attempts, one by one, using their previous attempts and the training students’ data. We reported the average
performance over five folds of testing data, as well as its calculated 95% confidence interval. In order to see how
the proposed model performed over time, we performed online training and testing, in which we predict the test
data attempt by attempt. For hyper-parameter tuning on our method and all baselines, we perform grid search over
25% of the training data that is separated for validation. For GRATE, we grid searched over K, C ∈ {3, 5, · · · , 17, 19},
𝜆𝑠 , 𝜆𝑎 ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, and 𝜂 ∈ {0.001, 0.01, 0.1, 0.2, 0.3}. The best hyper-parameters are listed in Table 2.

Table 2. Hyper-parameters of GRATE on three datasets.
Dataset M T N K C 𝜆𝑠 𝜆𝑎 𝜂

MORF 686 25 10 3 9 0.001 0.001 0.1
CSIntro 120 50 48 7 9 0 0.01 0.2

MasteryGrids 382 70 30 3 9 0 0 0.01

To evaluate the proposed approach’s performance, we compare it with six different baseline models that cover a
range of approaches to the task of knowledge tracing, from hidden Markov models to tensor factorization and deep
learning. A more detailed comparison of our model with these baselines can be found in the last part of Section 2.2
(model intuition). Here is a short description of each of the baseline methods.
5http://www.machineteaching.tech/en/
6http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

9

http://www.machineteaching.tech/en/
http://adapt2.sis.pitt.edu/wiki/Mastery_Grids_Interface

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

• DKT: uses recurrent neural networks to model student learning on one concept at a time [17]. DKT does not have
the student knowledge modeling and domain knowledge modeling components. The performance is typically
not interpretable.

• DKVMN: is a variant of memory-augmented neural networks that tracks student states on multiple concepts [28].
Our model and DKVMN share some similarities: 1) DKVMN also uses a dynamic matrix to model student’s
knowledge state; 2) a student’s performance on a specific question is determined by the concept coverage of the
question and the student’s mastery level of each concept; and 3) the Markov property of the knowledge state is
modeled.

• iBKT7: is an extended hidden Markov model variant of the standard Bayesian knowledge tracing, providing
individualization on student priors, learning rate, guess, and slip parameters in students [15, 25, 27].

• PMF: is a classic probabilistic matrix factorization method for estimating missing values in matrices [13]. To
apply it on sequential student data, we use the last attempt of each question by each time index to build the
matrix, mask test students’ next questions for prediction, and estimate student performance on masked questions
using observed entries in the matrix.

• FDTF8: is a knowledge tracing method based on tensor factorization that enforces a constraint to guarantee a
monotonic increase in student knowledge as per attempt [20].

• BPTF9: is a Bayesian tensor factorization method for recommender systems [23]. Unlike our model, BPTF uses a
Gaussian distribution to smooth the knowledge transitions.

3.3 GRATE for Student Performance Prediction

In our first set of experiments, we evaluated the proposed model’s performance in the task of student performance
prediction, as compared to the baselines. The experimental results are shown in Table 3. Since in the MORF and CSIntro
datasets, the scores are real numbers, we use the root mean squared error (RMSE) between the predicted and test scores
for evaluation (a lower number is better). In the MasteryGrids dataset, the student performance is recorded as a binary
success or failure. As a result, we used the classification mode of our proposed model and evaluated the results in terms
of area under the curve (AUC), in which the higher values represent better performance.

As we can see, our proposed method significantly outperforms most of the baselines. The aggregation and ranked
constraint not only do not harm the results, but can improve them too. Based on our results, iBKT lags behind
other baselines and FTDF has the second-best performance in MORF and CSIntro, while DKT is better than FTDF in
MasteryGrids. This could be because DKT was designed for predicting the probability of success in datasets with binary
scores, while FTDF was originally designed for estimating the score values. Deep learning-based methods (DKT and
DKVMN) did not have the best performance among the baseline models. For example, DKVMN performed poorly on
the MORF dataset. This could be because all the baseline approaches, especially the deep learning and Markov model
ones, were designed for simple types of problems and are highly sensitive to student performance fluctuations, which
result in less accurate performance predictions. This could also be because of the medium size of our datasets with
a fewer number of both problems and students. These results from deep learning models are in agreement with the
conclusions in previous research that show that deep learning models are not always the best choice for KT tasks in
terms of data efficiency, interpretability, and prediction accuracy [5, 9, 22, 24].

7iBKT code from https://github.com/CAHLR/pyBKT
8FTDF code from https://github.com/persai-lab/Tensor-Factorization-EDM
9BPTF code from https://www.cs.cmu.edu/~lxiong/bptf/bptf.html

10

https://github.com/CAHLR/pyBKT
https://github.com/persai-lab/Tensor-Factorization-EDM
https://www.cs.cmu.edu/~lxiong/bptf/bptf.html

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

Table 3. Student performance prediction results in each of the datasets. Average root mean square error (RMSE) and area under
curve (AUC) over five folds are used to evaluate performance on datasets with numerical feedback and binary feedback, respectively.
∗ and ∗∗ denote significance levels of p-value< 0.1 and < 0.05 in GRATE’s improvement over the baselines.

MORF CSIntro MasteryGrids
Method RMSE RMSE AUC
DKT 0.2170∗ 0.4132∗∗ 0.6968

DKVMN 0.2608∗∗ 0.4202∗∗ 0.6881
iBKT 0.2470∗∗ 0.6215∗∗ 0.6048∗∗
PMF 0.2118 0.3982∗ 0.5647∗∗
BPTF 0.2235∗∗ 0.3796 0.6942
FDTF 0.2088 0.3752 0.6877
GRATE 0.2033 0.3726 0.7035

3.4 Ablation Study

Next, we experimented to evaluate the effect of different model components on its performance. For that, we conducted
an ablation study, removing one component from the model each time: GRATE-W/O-Agg for GRATE without the
adaptive granularity aggregation component and GRATE-W/O-Rank for GRATE without the rank-based component.
The results of comparing these two models with GRATE on the task of performance prediction are shown in Table 4.
As indicated, the full model performed better than both GRATE-W/O-Agg and GRATE-W/O-Rank in all datasets. This
shows that neither of these two components was dispensable for student knowledge modeling and proved our adaptive
granularity aggregation and rank-based learning assumptions.

Table 4. Ablation study results. The average performance over five folds of data ± 95% confidence intervals are reported.
MORF CSIntro MasteryGrids

Methods RMSE RMSE AUC
GRATE-W/O-Agg. 0.2100 ± 0.0140 0.3809 ± 0.0089 0.6849 ± 0.0219
GRATE-W/O-Rank 0.2251 ± 0.0109 0.3879 ± 0.0244 0.6837 ± 0.0297

GRATE 0.2033 ± 0.0081 0.3726 ± 0.0116 0.7035 ± 0.0240

3.5 GRATE for Student Knowledge Modeling

As mentioned in Section 2, GRATE can represent student knowledge over attempts via tensor K = 𝑆A. In the following,
we visualize student knowledge to study the interpretability of discovered knowledge values in students. For easier
visualization in two dimensions, we show the average student knowledge values, in each of the discovered latent
concepts, over time. The results for the CSIntro dataset are shown in Figure 2. The darker and bluer cells represent
higher knowledge values, and the light and yellower ones represent lower knowledge values. The X-axis shows the
attempt numbers. As we can see, students start with a low average knowledge on all concepts in their first attempt,
and gradually gain knowledge as they try the problems. This increase is not strict, as in some attempts the students
have a lower level of knowledge as compared to their previous attempt. This is expected, as our rank-based knowledge
increase constraint allows for occasional forgetting. The learning rates between different concepts are different from
each other. Most importantly, we can see that some attempts are aggregated together and some are left as individual
attempts. For example, attempts 4 and 5 are summarized together, and attempts 17, 18, and 19 are joined together.

To evaluate the rank-based constraint effect on student knowledge, we looked at the average student knowledge
values calculated using the GRATE-W/O-Rank model shown in Figure 3. In this model, the attempts are still aggregated.
We can see that removing the rank-based constraint results in higher fluctuations in student knowledge values. For
example, students start with higher knowledge values in the first (0) attempt in Figure 3 only to lose it in the next

11

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

[0
]

[1
]

[2
, 3

]
[4

, 5
]

[6
, 7

]
[8

, 9
, 1

0,
 1

1]
[1

2,
 1

3]
[1

4,
 1

5,
 1

6]
[1

7,
 1

8,
 1

9]
[2

0]
[2

1]
[2

2]
[2

3,
 2

4]
[2

5]
[2

6]
[2

7]
[2

8]
[2

9]
[3

0,
 3

1]
[3

2]
[3

3]
[3

4]
[3

5]
[3

6,
 3

7]
[3

8]
[3

9]
[4

0]
[4

1]
[4

2]
[4

3]
[4

4]
[4

5]
[4

6]
[4

7]
[4

8]
[4

9]

Aggregated Attempts

0
1

2
3

4
5

6
7

8
Co

nc
ep

t
Fig. 2. GRATE: Average knowledge transition over all students on CSIntro dataset. The darker and bluer cells represent higher
knowledge values and the light and yellower ones represent lower knowledge values. (Best viewed in color).

[0
]

[1
]

[2
, 3

]
[4

, 5
]

[6
, 7

]
[8

, 9
, 1

0,
 1

1]
[1

2,
 1

3]
[1

4,
 1

5,
 1

6]
[1

7,
 1

8,
 1

9]
[2

0]
[2

1]
[2

2]
[2

3,
 2

4]
[2

5]
[2

6]
[2

7]
[2

8]
[2

9]
[3

0,
 3

1]
[3

2]
[3

3]
[3

4]
[3

5]
[3

6,
 3

7]
[3

8]
[3

9]
[4

0]
[4

1]
[4

2]
[4

3]
[4

4]
[4

5]
[4

6]
[4

7]
[4

8]
[4

9]

Aggregated Attempts

0
1

2
3

4
5

6
7

8
Co

nc
ep

t

Fig. 3. GRATE-W/O-Rank: Students’ Average Knowledge State on CSIntro Dataset.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Raw Attempt Index

0
1

2
3

4
5

6
7

8
Co

nc
ep

t

Fig. 4. GRATE-W/O-Agg.: Students’ Average Knowledge State on CSIntro Dataset.

attempt. Contrasting this with Figure 2, we see the effect of the knowledge increase constraint at the initial attempts.
As another example, student knowledge values on Concept 2 at Attempt 29 is much higher than their knowledge values
at Attempts 28 and 30. This value is much higher than the estimated knowledge values for Concept 2 at Attempt 29 in
Figure 2, when we have a rank-based constraint.

To assess why some of the attempts are aggregated together in GRATE and some are not, we look at the average
student knowledge values in the GRATE-W/O-Agg model in Figure 4. Here, although the rank-based constraint exists
in the model, we see more fluctuations in the student knowledge values, as compared to the full GRATE model. In
particular, looking at the attempts that are aggregated together in Figure 2, we see that high fluctuation attempts in
Figure 4 are aggregated together to create a smoother knowledge increase in Figure 2. For example, looking at Concept
2 at Attempts 17, 18, and 19 in Figure 4, we can see that the knowledge value drops from Attempt 17 (with value
𝑘 = 0.30) to 18 (𝑘 = 0.15), just to increase again in Attempt 19 (𝑘 = 0.20). Similarly, looking at Concept 3 in the same
attempts, we can see that the knowledge value decreases from Attempt 17 (𝑘 = 0.15) to 18 (𝑘 = 0.13), but then increases
again in Attempt 19 (𝑘 = 0.22). However, in the full GRATE results in Figure 2, these fluctuations are considered to be
insignificant, and Attempts 17, 18, and 19 are aggregated together. Another interesting observation is that the initial

12

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

attempts are more aggregated together, as compared to the last attempts. This could be because of the more confident
knowledge estimations as more data is gathered about student learning in the final attempts. Another potential reason
is the low variability of knowledge among different students at the larger attempts, since a lesser number of students
have longer sequences.

3.6 GRATE for Domain Knowledge Modeling

As shown in GRATE’s model in Section 2.2, matrix 𝑄 can represent latent concepts in different problems. In this
experiment, we look at the 𝑄-matrix discovered by GRATE in the Mastery Grids dataset as a case study, to make sense
of the discovered latent concepts. We chose Mastery Grids for this experiment, since each problem is assigned to a
“topic” in this dataset. We have not used these topics, or any form of content or annotated concepts, as an input to our
model. As a result, we use them as a standard to analyze the discovered matrix 𝑄 .

Va
ria

bl
es

If
St

at
em

en
ts

C
om

pa
ris

on
Lo

gi
ca

l
O

pe
ra

to
rs

Lo
op

s

Fu
nc

tio
ns

O
ut

pu
t

Fo
rm

at
tin

g

Li
st

s

St
rin

gs
C

la
ss

O
bj

ec
ts

D
ic

t Va
lu

e
R

ef
er

en
ce

s

Ex
ce

pt
io

n

built-in function call

data type conversion
ambiguous value mapping

comparisonlist indexing

len()arithmetic

placeholder

string/list manipulation

operation precedance variable tracing

value inplace increment

define function

Fig. 5. Matrix 𝑄 discovered by GRATE for the Mastery Grids dataset. Each column represents a problem. Each row represents a
latent concept. (Best viewed in color.)

Figure 5 shows the matrix 𝑄 discovered by GRATE for the Mastery Grids dataset. The lower X-axis shows problem
IDs, the upper X-axis shows problem topics from the dataset, and the Y-axis shows the discovered latent concepts. Each
cell is colored according to the latent concept weight in the problem. The dark blue cells have a higher weight and the
light yellow cells have a lower weight. As the figure shows, many problems with the same topic have a high weight
in similar latent concepts. For example, Problems 3 and 4 that have the “if statement" topic both have a high weight
in latent concept 3 and a low weight in latent concept 0. Or, Problems 16, 17, 18, and 19 that have the “list indexing"
topic all have a high weight in latent concept 3 and a low weight in latent concepts 1 and 2. However, we can also see
problems with different topics that have similar weights in latent concepts and problems with the same topic that have
different important latent concepts. For example, Problems 4 (with the “if statement" topic) and 5 (with the “comparison"
topic) that both have a high weight in latent concepts 3 and 7.

To better understand and analyze this phenomenon, we study and annotate each latent concept manually. To this end,
for each latent concept 𝑞, we compare the problems in which 𝑞 has a high weight and come up with a list of detailed
concepts that are presented in them. Then, we annotate the latent concept 𝑞 with the intersection of these concepts.
These annotations are color-coded and presented in the Y-axis of Figure 5, next to the latent concept numbers. The
problems that have a high weight of each annotated latent concept are marked by circles with the same color as the
concept. For example, latent concept 7 has a high weight in Problems {4, 5, 18, 19, 24} that are from different topics. In

13

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

Fig. 6. Problems 4 (left), 18 (top right), and 24 (bottom right) in MasteryGrids dataset.

these problems, besides their major topic annotated in the dataset, two main concepts repeatedly appear: “arithmetics"
operations and “len()" function. For instance, we show Problems 4, 18, and 24 in Figure 6. We can see that in all of these
three problems an arithmetic operation is necessary: Problem 4 computes the remainder of a division, Problem 18 has
the addition operation, and Problem 24 has addition and subtraction operations. Meanwhile, both Problems 18 and 24
use the “len()” function to compute the length of a list and a dictionary, respectively. We can see similar patterns in
other problems with latent concept 7. For this, we annotated Concept 7 with “arithmetics" and “len()". We followed the
same process for all latent concepts, as shown in Figure 6. This shows that our matrix 𝑄 can unveil more detailed and
complex structures in problems that go beyond simple labeling of them based on their “topics”. The discovered latent
concepts not only represent conceptual similarities between problems, but also relate to student skills and performance
in a detailed way.

4 CONCLUSIONS

In this paper, we propose a solution to the knowledge tracing challenge for complex problem-solving. We argue that
not all student attempts on complex problems are equally informative to estimate student knowledge and propose
a granular rank-based tensor factorization (GRATE) model that adaptively aggregates consecutive student attempts
for a more accurate estimate of student knowledge. With experimenting on three real-world datasets we supported
our argument by showing that: (a) GRATE could perform better than state-of-the-art baselines in predicting student
performance; (b) both aggregation and rank-based constraint are necessary for GRATE’s superior performance; (c)
GRATE improves student knowledge modeling by discovering and smoothing highly fluctuating and noisy attempts and
implicitly detecting students’ slip and guess; and (d) the latent concepts discovered by GRATE are meaningful and go
beyond the labeled topics in the data. Although GRATE’s discovered concepts are latent and not directly human-readable,
GRATE can guide teachers to determine which problems a student should practice to gain the required knowledge
in these concepts. The limitations of our study include the plausible but not analyzed assumptions, the medium size
of our datasets, and not having access to the detailed expert annotations for labeling the latent concepts. Also, as the
exactness of the discovered latent concepts depends on the accuracy of our model in predicting students’ performance,
the interpretability of the discovered matrix 𝑄 can vary.
Acknowledgements. This paper is based upon work supported by the National Science Foundation under Grant No.
1755910.

14

Knowledge Tracing for Complex Problem Solving: Granular Rank-Based Tensor Factorization UMAP ’21, June 21–25, 2021, Utrecht, Netherlands

REFERENCES
[1] Juan Miguel L Andres, Ryan S Baker, George Siemens, Dragan Gašević, and Catherine A Spann. 2016. Replicating 21 Findings on Student Success in

Online Learning. Technology, Instruction, Cognition, and Learning 10, 4 (2016), 313–333.
[2] Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin Cha, Dongmin Shin, Chan Bae, and Jaewe Heo. 2020.

Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing. In Proceedings of the 7th ACM Conference on Learning@ Scale
(Virtual). ACM, 341–344.

[3] Albert T Corbett and John R Anderson. 1994. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. User Modeling and
User-Adapted Interaction 4, 4 (1994), 253–278.

[4] Thanh-Nam Doan and Shaghayegh Sahebi. 2019. Rank-Based Tensor Factorization for Student Performance Prediction. In Proceedings of The 12th
International Conference on Educational Data Mining (Montreal, QC, Canada). International Educational Data Mining Society, 288–293.

[5] Theophile Gervet, Ken Koedinger, Jeff Schneider, and Tom Mitchell. 2020. When is Deep Learning the Best Approach to Knowledge Tracing?
Journal of Educational Data Mining 12, 3 (2020), 31–54.

[6] Aritra Ghosh, Neil Heffernan, and Andrew S Lan. 2020. Context-Aware Attentive Knowledge Tracing. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual). ACM, 2330–2339.

[7] William J Hawkins, Neil T Heffernan, and Ryan SJD Baker. 2014. Learning Bayesian Knowledge Tracing Parameters with a Knowledge Heuristic and
Empirical Probabilities. In Proceedings of the 12nd International Conference on Intelligent Tutoring Systems (Honolulu, HI, USA). Springer, 150–155.

[8] Tanja Käser, Severin Klingler, Alexander G Schwing, and Markus Gross. 2017. Dynamic Bayesian Networks for Student Modeling. IEEE Transactions
on Learning Technologies 10, 4 (2017), 450–462.

[9] Mohammad Khajah, Robert V Lindsey, and Michael C Mozer. 2016. How Deep is Knowledge Tracing?. In Proceedings of The 9th International
Conference on Educational Data Mining (Raleigh, NC, USA). International Educational Data Mining Society, 94–101.

[10] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37.
[11] Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk. 2014. Sparse Factor Analysis for Learning and Content Analytics. The

Journal of Machine Learning Research 15, 1 (2014), 1959–2008.
[12] Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky. 2014. Mastery Grids: An Open Source Social Educational Progress Visualization.

In Proceedings of the 9th European Conference on Technology Enhanced Learning (Graz, Austria). Springer, 235–248.
[13] Andriy Mnih and Russ R Salakhutdinov. 2008. Probabilistic Matrix Factorization. In Proceedings of the 21st Annual Conference on Neural Information

Processing Systems (Vancouver, BC, Canada). JMLR.org, 1257–1264.
[14] Laura O. Moraes and Carlos Eduardo Pedreira. 2020. Designing an Intelligent Tutoring System Across Multiple Classes. In Proceedings of the 4th

Educational Data Mining in Computer Science Education Workshop (Virtual). http://ceur-ws.org/Vol-2734/short2.pdf
[15] Zachary A Pardos and Neil T Heffernan. 2011. KT-IDEM: Introducing Item Difficulty to the Knowledge Tracing Model. In Proceedings of the 19th

International Conference on User Modeling, Adaptation, and Personalization (Girona, Spain). ACM, 243–254.
[16] Philip I Pavlik, Hao Cen, and Kenneth R Koedinger. 2009. Performance Factors Analysis-A New Alternative to Knowledge Tracing. In Proceedings of

the 14th International Conference on Artificial Intelligence in Education (Brighton, England). Springer, 531–538.
[17] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas J Guibas, and Jascha Sohl-Dickstein. 2015. Deep Knowledge

Tracing. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems. JMLP.org, 505–513.
[18] Ekta Gujral Ravdeep Pasricha and Evangelos Papalexakis. 2020. Adaptive Granularity in Time Evolving Graphs as Tensors. In Proceedings of the 16th

International Workshop on Mining and Learning with Graphs (Virtual). http://www.mlgworkshop.org/2020/papers/MLG2020_paper_35.pdf
[19] Mark D Reckase. 2009. Multidimensional Item Response Theory Models. In Multidimensional Item Response Theory. Springer, 79–112.
[20] Shaghayegh Sahebi, Yu-Ru Lin, and Peter Brusilovsky. 2016. Tensor Factorization for Student Modeling and Performance Prediction in Unstructured

Domain.. In Proceedings of The 9th International Conference on Educational Data Mining (Raleigh, NC, USA). International Educational Data Mining
Society.

[21] Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Artus Krohn-Grimberghe, Alexandros Nanopoulos, and Lars Schmidt-Thieme. 2012. Factoriza-
tion Techniques for Predicting Student Performance. In Educational Recommender Systems and Technologies: Practices and Challenges. IGI Global,
129–153.

[22] Kevin H Wilson, Yan Karklin, Bojian Han, and Chaitanya Ekanadham. 2016. Back to the Basics: Bayesian Extensions of IRT Outperform Neural
Networks for Proficiency Estimation. In Proceedings of The 9th International Conference on Educational Data Mining (Raleigh, NC, USA). International
Educational Data Mining Society, 539–543.

[23] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell. 2010. Temporal Collaborative Filtering with Bayesian Probabilistic
Tensor Factorization. In Proceedings of the 2010 SIAM International Conference on Data Mining (Columbus, OH, USA). SIAM, 211–222.

[24] Xiaolu Xiong, Siyuan Zhao, Eric G Van Inwegen, and Joseph E Beck. 2016. Going Deeper with Deep Knowledge Tracing. In Proceedings of The 9th
International Conference on Educational Data Mining (Raleigh, NC, USA). International Educational Data Mining Society, 502–506.

[25] Yanbo Xu, Matthew J Johnson, and Zachary A Pardos. 2015. Scaling Cognitive Modeling to Massive Open Environments. In Workshop on Machine
Learning in Education at the 32nd International Conference on Machine Learning. http://ml4ed.cc/attachments/XuY.pdf

[26] Chun-Kit Yeung and Dit-Yan Yeung. 2018. Addressing Two Problems in Deep Knowledge Tracing via Prediction-Consistent Regularization. In
Proceedings of the Fifth Annual ACM Conference on Learning at Scale (London, United Kingdom). ACM, 1–10.

15

http://ceur-ws.org/Vol-2734/short2.pdf
http://www.mlgworkshop.org/2020/papers/MLG2020_paper_35.pdf
http://ml4ed.cc/attachments/XuY.pdf

UMAP ’21, June 21–25, 2021, Utrecht, Netherlands Wang, et al.

[27] Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. 2013. Individualized Bayesian Knowledge Tracing Models. In International
Conference on Artificial Intelligence in Education (Berlin, Heidelberg). Springer, 171–180.

[28] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. 2017. Dynamic Key-Value Memory Networks for Knowledge Tracing. In Proceedings of the
26th International Conference on World Wide Web (Perth, Australia). ACM, 765–774.

[29] Siqian Zhao, Chunpai Wang, and Shaghayegh Sahebi. 2020. Modeling Knowledge Acquisition from Multiple Learning Resource Types. In Proceedings
of The 13th International Conference on Educational Data Mining (Virtual). International Educational Data Mining Society, 313–324.

16

	Abstract
	1 Introduction
	2 Granular Rank Based Tensor Factorization (GRATE)
	2.1 Problem Formulation and Assumptions
	2.2 The Proposed Model
	2.3 Algorithm and Implementation Details

	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup and Baselines
	3.3 GRATE for Student Performance Prediction
	3.4 Ablation Study
	3.5 GRATE for Student Knowledge Modeling
	3.6 GRATE for Domain Knowledge Modeling

	4 Conclusions
	References

